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Chapter 1   Introduction 
 
 
Animal research comprises both experiments and surveys conducted either on-station, or 
on-farm or in the field.  Such research has to be properly designed, conducted, 
statistically analysed and interpreted.  Typically, comparable groups of animals are 
subjected to specified treatments for some predetermined period and the results of these 
imposed treatments, as measured by one or more variables, are used for estimating 
different types of responses. 
 
The scope of this course is to introduce some of the basic principles of experimental 
design and statistical analysis.  The purpose of good experimental design is to ensure that 
the results obtained are free of bias and that interpretations can be made which are 
uncomplicated by the existence of uncontrollable factors.  Statistical methods, from the 
mere calculation of treatment means and standard errors to the more elaborate techniques 
of analysis of variance, are useful and necessary tools for the researcher.  But only 
experiments of sound design permit sound statistical analysis and interpretation. 
 
In this course we shall start with experimental design and then go on to discuss the 
structures of data that we collect in experiments and how we can explore patterns and 
variation.  Then we shall see how a simple statistical model is formed and how it is used 
to produce an analysis of variance or regression.  Worked examples of analyses of 
variance will illustrate the importance of good experimental design.  Genstat will be 
taught and used in some of the practicals. 
 
 
Example data sets 
 
a)  The following data set  in Table 1.1 (data set A), which is artificial, will be one of two 
sets of data used throughout much of this course. 
 
It describes an experiment carried out to study the effect of supplementation of weaned 
lambs on their health and growth rate when exposed to helminthiasis.  Sixteen Dorper 
(breed 1) and 16 Red Maasai (breed 2) lambs were treated with an anthelmintic at 3 
months of age (following weaning) and assigned at random within ‘blocks’ of 4 per 
breed ranked on the basis of 3-month body weight to supplemented and non-supplement 
groups.  Thus, 2 lambs from each block were assigned at random to supplemented and 
non-supplemented groups.  All lambs grazed on pasture for a further 3 months. At night 
they were housed and lambs in the supplemented group were fed cotton cake and bran 
meal. 
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Table 1.1  Data set A (Dorper / Red Maasai supplementation trial) to be used throughout these    
                    notes 
 

Record ID Breed Sex Supp-
lement 

Block Weight at 
3m (kg) 

Weight at 
6m (kg) 

PCV 
(%) 

FEC 
(epg) 

Weight 
gain (kg) 

 
1 349 1 2 1 1 8.0  8.9 10 6500 0.9 

2 326 1 2 1 1 9.0 10.1 11 2650 1.1 

3 393 1 1 1 2 12.0 12.6 22 750 0.6 

4 71 1 1 1 2 12.3 14.6 15 5200 2.3 

5 271 1 1 1 3 13.0 13.7 19 4800 0.7 

6 382 1 2 1 3 15.5 16.8 24 2450 1.3 

7 85 1 2 1 4 16.3 18.2 27 200 1.9 

8 176 1 2 1 4 15.9 17.7 21 3000 1.8 

9 286 1 2 2 1 11.0 13.6 21 1600 2.6 

10 183 1 1 2 1 9.9 11.7 21 450 1.8 

11 21 1 2 2 2 11.6 13.1 25 2900 1.5 

12 122 1 1 2 2 12.5 14.8 25 300 2.3 

13 374 1 1 2 3 14.6 17.9 19 2250 3.3 

14 32 1 2 2 3 14.2 16.9 22 2800 2.7 

15 282 1 2 2 4 16.3 20.2 20 750 3.9 

16 94 1 1 2 4 16.7 17.7 13 5600 1.0 

17 127 2 2 1 1 7.5 8.1 26 1350 0.6 

18 216 2 2 1 1 8.2 9.3 19 1150 1.1 

19 133 2 1 1 2 10.1 11.7 30 200 1.6 

20 249 2 1 1 2 8.8 10.4 28 0 1.6 

21 123 2 2 1 3 1.6 12.6 23 600 1.0 

22 222 2 2 1 3 11.3 13.5 24 1500 2.2 

23 290 2 2 1 4 12.3 14.3 22 1950 2.0 

24 148 2 1 1 4 13.1 14.9 26 500 1.8 

25 142 2 2 2 1 8.2 11.5 25 850 3.3 

26 154 2 2 2 1 9.5 12.2 35 700 3.7 

27 166 2 1 2 2 9.7 12.8 29 400 3.1 

28 322 2 1 2 2 8.6 12.0 26 800 3.4 

29 156 2 1 2 3 10.2 13.0 28 1550 2.8 

30 161 2 2 2 3 11.2 14.6 22 550 3.4 

31 321 2 1 2 4 12.1 15.9 25 1250 3.8 

32 324 2 1 2 4 13.8 18.1 24 1100 4.3 
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Data recorded included body weight at 3 months of age and body weight, packed red cell 
volume (PCV) and faecal egg count (FEC) at 6 months of age.   
 
Some of the questions we will attempt to answer will be: 
 
• Did supplementation improve weight gain? 
 
• Did supplementation affect PCV and FEC? 
 
• Were there any differences in weight gain, PCV or FEC between breeds? 
 
• Is the experiment well designed? 
 
• What size of experiment (number of animals per group) would have been 

sufficient to detect differences between breeds and diets? 
 
 
b) The second data set (data set B), shown in Tables 1.2 and 1.3, is from a vaccine 

immunisation experiment. It involves the evaluation of what is referred to as 
a‘trypanosome recombinant ARF1 protein’ for testing its protective capacity 
incattle against a Trypanosoma congolense challenge.  (These data are included 
withthe kind permission of Noel Murphy).  Seven Boran cattle aged between 
4 and 6 months were immunised subcutaneously with 250 µg of ARF1 and boosted 
with the same amount of antigen three times at 28-day intervals.  Two control groups
of 7 animals were also used. The first was immunised with a recombinant p32 from
Theileria parva, purified in the same manner as ARF1, to ensure that histidine 
amino acids, to which the proteins ARF1 or p32 are both tagged during the purification
process, do not contribute to the protection.  This tagging to histidine amino acids 
is referred to as a “Histag”.  The second control group was not immunised. 

 
Fourteen days after the final boost each animal was challenged introvenously.  
Body weights were recorded weekly up to day 139 post infection.  Parasitaemia 
and PCV were measured daily for the first 21 days and twice a week thereafter.  
The data set illustrated here shows the form that the data took. 
 
The questions to be asked in the analysis will be: 
 
• Did ARF1 immunisation offer protection? 

 
• Was this protection unrelated to the His tag? 

 
• How was protection, if it occurred, reflected in terms of weight gain and 

reduced development of anaemia? 
 

• Again, was the experiment well designed and were there sufficient numbers of 
animals used? 
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Table 1.2  Data set B (part 1) to be used in these notes.  The table shows body weights measured at approximately weekly intervals in immunisation   
                 experiment. 
 
  Date of  Imm. Initial Body weight (kg) 
Record Animal birth Block group† Wt. (kg) 0 12 19 ……… 49 56 63 69 76 ……… 125 132 139 
                   
  1   4 04/06 1 A 142 180 178 180 ……… 188 182 182 184 178 ……… 182 184 182 
  2   6 18/07 2 A 112 148 140 148 ……… 162 160 162 162 162 ……… 168 170 170 
  3   8 01/07 2 A 120 150 142 152 ……… 148 142 140 134 138 ………     0     0     0 
  4 11 04/07 2 A 122 156 148 152 ……… 162 162 170 170 172 ……… 180 180 182 
  5 16 12/06 1 A 132 160 116 110 ……… 102   98   96   98     0 ………     0     0     0 
  6 19 08/07 2 A 122 160 152 160 ……… 160 152 156 150 152 ………     0     0     0 
  7 20 24/06 1 A 108 147 124 132 ……… 132 132 128 124     0 ………     0     0     0 
  8   1 05/07 2 B 114 139 136 138 ……… 140 138 136 132     0 ………     0     0     0 
  9   5 01/06 1 B 160 198 194 198 ……… 200 196 198 196 202 ……… 202 200 200 
10   9 05/07 2 B 136 172 168 174 ……… 176 174 182 176 180 ……… 170 168 168 
11 12 15/07 2 B 100 118 116 120 ……… 132 138 138 138 142 ……… 148 152 148 
12 14 02/06 1 B 140 200 200 200 ……… 212 202 206 200 196 ……… 194 196 196 
13 17 04/07 2 B 136 210 200 200 ……… 210 200 204 206 206 ……… 216 214 216 
14 18 20/06 1 B 112 130 142 152 ……… 148 146 148 152 152 ……… 154 154 154 
15   2 28/06 2 C 122 152 144 152 ……… 144 146 146 138 140 ………     0     0     0 
16   3 06/06 1 C   * 144 140 144 ……… 146 140 146 134 136 ……… 116 116     0 
17   7 28/07 2 C 110 132 126 128 ……… 142 144 150 150 156 ……… 162 162 160 
18 10 10/06 1 C 124 120 120 126 ……… 118 114 110 112 108 ………     0     0     0 
19 13 09/06 1 C 120 148 144 148 ……… 166 160 162 160 164 ……… 176 178 180 
20 15 02/07 2 C 114 138 146 154 ……… 136 132 130 134 126 ……… 124 124 122 
21 21 01/07 2 C 126 164 156 158 ……… 160 148 148     0    0 ………      0     0     0 
                   
 
* not recorded 
† A = ARF1; B = p32; C = negative control 
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Table 1.2  Data set (part 2) to be used in the notes.  The table shows packed red cell volume (PCV) measured at approximately weekly intervals in  
                 immunised experiment. 
 
  Date of  Imm. Initial PCV (%) 
Record Animal birth Block group† PCV (%) 7 9 10 11 ……. 42 46 49 53 56 60 …….. 136 139 
                    
  1   4 04/06 1 A 39.2 38.3 35.6 31.6 34.4 …… 20.4 19.8 19.8 17.9 18.2 18.8 ……. 23.4 25.5 
  2   6 18/07 2 A 33.6 34.0 31.6 31.3 31.0 …… 20.4 21.0 20.4 18.5 22.5 21.3 ……. 21.6 22.8 
  3   8 01/07 2 A 32.5 34.7 30.1 30.1 28.6 …… 16.7 16.1 16.4 14.9 17.0 15.5 ……..   0.0   0.0 
  4 11 04/07 2 A 30.7 33.4 31.6 29.8 28.3 …… 15.8 21.9 19.2 20.7 22.8 21.3 ……. 20.1 21.9 
  5 16 12/06 1 A 31.2 31.3 31.6 28.6 28.0 …… 14.9 14.6 13.7 12.2 12.2 12.5 …….   0.0   0.0 
  6 19 08/07 2 A 36.5 35.3 35.3 31.0 29.8 …… 16.1 16.7 16.1 15.5 16.1 16.7 …….   0.0   0.0 
  7 20 24/06 1 A 29.8 28.0 27.1 27.1 26.1 …… 12.5 12.2 12.2 11.9 11.9 11.9 ……   0.0   0.0 
  8   1 05/07 2 B 31.8 31.6 31.3 30.4 31.0 …… 12.5 13.4 13.1 12.8 14.3 12.8 ……   0.0   0.0 
  9   5 01/06 1 B 36.8 37.4 30.4 35.3 35.3 …… 16.7 16.1 17.6 19.2 19.2 18.8 …… 21.0 19.5 
10   9 05/07 2 B 34.9 33.1 33.4 29.8 30.1 …… 19.8 18.8 19.2 20.4 20.4 19.5 …… 21.6 22.8 
11 12 15/07 2 B 30.0 32.5 30.4 30.4 28.9 …… 20.4 21.6 21.3 19.8 21.6 21.9 …… 24.6 25.2 
12 14 02/06 1 B 36.7 37.4 35.6 33.1 34.7 …… 21.0 21.0 18.5 17.6 18.2 19.2 …… 17.9 19.5 
13 17 04/07 2 B 36.2 35.6 34.7 34.7 33.7 …… 19.8 19.5 21.0 18.2 21.0 21.3 …… 27.4 28.3 
14 18 20/06 1 B 33.7 34.0 31.0 28.9 27.4 …… 18.2 18.5 19.5 21.0 20.1 20.7 …… 20.4 18.2 
15   2 28/06 2 C 30.6 32.5 31.6 30.4 30.4 …… 13.7 13.1 14.3 13.4 11.9 13.7 ……   0.0   0.0 
16   3 06/06 1 C 28.9 31.6 32.5 31.3 31.3 …… 21.0 17.0 16.4 14.3 14.9 16.7 …… 15.8   0.0 
17   7 28/07 2 C 31.9 31.3 32.2 30.7 28.9 …… 29.2 28.3 30.7 29.2 28.0 28.0 …… 28.3 28.3 
18 10 10/06 1 C 25.3 27.7 25.2 24.6 24.0 …… 16.7 15.2 14.3 14.0 14.6 14.3 ……   0.0   0.0 
19 13 09/06 1 C 30.4 31.6 31.0 30.4 28.0 …… 30.4 31.6 31.6 31.3 31.3 31.6 …… 28.6 27.4 
20 15 02/07 2 C 35.6 34.0 33.1 30.1 29.5 …… 15.5 13.7 15.2 14.6 15.2 17.3 …… 17.9 19.8 
21 21 01/07 2 C 33.3 34.4 30.7 30.4 28.0 …… 13.4 12.2 12.5 12.2 13.1 12.8 ……   0.0   0.0 
                    
 
* not recorded 
† A = ARF1; B = p32; C = negative control 
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Chapter 2   Experimental design 
 
 
Before attempting to analyse data it is necessary to understand how the experiment, 
from which the data have been obtained, is designed.  If the experiment has not been 
designed well then it may not be possible to undertake a satisfactory analysis of the 
data.  Before discussing methods of statistical analysis we shall firstly briefly review 
important aspects of good experimental design. 
 
 
Objectives 
 
Before designing an experiment it is important that the objectives for the experiment 
are clear, well-defined, realistic and relevant.  This may seem obvious.  However, 
from observations in the ways that IAUCC forms are sometimes completed at ILRI, it 
is often apparent that the researcher does not always given this sufficient thought.  So, 
objectives should be : 
 
• Clear.  If the objectives are vague it will be difficult to know how to go about 

planning an experiment. 
 
• Well-defined.  If the objectives are not carefully stated then it will not be clear 

what hypotheses are to be evaluated. 
 
• Realistic.  The researcher needs to be confident that an experiment can be 

designed that meets the objectives. 
 
• Relevant.  The objectives for the experiment need to be relevant to the problem in 

hand.  In other words the researcher will be a step nearer to solving the problem 
once he/she has the results from the experiment. 

 
All this may seem a little obvious but nevertheless it is very important.  Indeed, 
successful planning of an experiment can lead to a revised set of objectives once it 
becomes clear that the original objectives are unrealistic in terms of the numbers of 
animals that may be required. 
 
Exercise 2.1.  Here are two examples of vague objectives. 
 
1. To evaluate the effects of increased concentrate feeding on reproductive 

performance. 
2. To evaluate a new method for controlling disease. 
     Choose one of these and adapt the objective to an experimental situation that you   
     might be familiar with and write more clear and precise objectives. 
 
 
Treatments 
 
Most experiments will involve some form of ‘treatment’.  This could be a method of 
immunisation, a form of chemotherapy, an alternative diet or even a different crop 
variety or animal breed.  Many objectives will simply require the comparison of mean 
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responses to different treatments, and one of these treatments might be a control.  In 
certain cases more complex comparisons are needed.  For example, different doses 
may need to be compared for a particular treatment.  In this case the experiment may 
include three dose levels, and depending on the experimental objective, it may also be 
necessary to include a control.  A control can take various forms.  Sometimes it can be 
a zero treatment in which nothing is done to the animal.  Often, however, a placebo 
treatment will be needed to ensure that the appropriate hypothesis is being tested.  
Thus, in an on-farm experiment the control could be the farmer’s normal practice.  In 
the second Example B two controls were used.  The p32-immunised control was used 
to evaluate the hypothesis that the His tag was not influential in any protection that 
may be observed.  The non-immunised control was to determine the response to 
infection without any form of immunisation. 
 
Exercise 2.2  Plan a suitable control (or controls) for an experiment that might be 
planned to answer the objective you set yourself in Exercise 1. 
 
 
Factorial treatments 
 
A factorial treatment structure is a particularly useful concept that can be used to 
result in efficient experimental design.  Such a structure refers to a set of treatments 
formed from a combination of two or more different treatments, each with two or 
more levels.  When used in this way the different treatments are often referred to as 
factors. Such factorial combinations often arise naturally from the proposed 
hypothesis, but they can also be used to test other unrelated hypotheses more 
efficiently in one experiment than in separate ones.  For example, two different 
formulations of an experimental vaccine may require to be compared.  At the same 
time the researcher is interested in evaluating alternative delivery systems for the 
vaccine.  He could either test each hypothesis in turn in consecutive experiments or 
alternatively test both hypotheses simultaneously by using each delivery system to 
vaccinate half of the animals receiving each vaccine formulation.   The second 
method is more efficient.  Not only may it require fewer animals to be used in total 
but it also allows the interaction between vaccine formulation and delivery system to 
be studied at the same time.  By the term interaction we mean that the type of delivery 
system influences the efficacy of one vaccine formulation more than the other.  If 
there is no interaction then it means that any difference between delivery systems is 
the same for each vaccine formulation.  Such a design is referred to as a 2 x 2 
factorial. 
 
Most experiments feature as part of a long-term research plan.  Thus, in designing an 
experiment one needs to take into account not only the hypotheses that require 
immediate testing but also others next in line to see whether any can be brought 
forward to be encompassed within the current one. 
 
Exercise 2.3.  Describe the treatment factorial structure in Example data set A.  Is 
there a treatment factorial structure in Example data set B? 
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Replication or blocking 
 
Estimating the precision of the results obtained from an experiment depends on the 
level of individual variation.  Therefore, it is necessary to be able to calculate this 
level of variation in the data that one is collecting.  In order to do this there must be 
data from more than one animal in each treatment.  Thus the treatments must be 
replicated. 
 
Very low levels of replication such as two animals per treatment may not be sufficient to 
give an adequate estimate of the standard deviation ( a measure of variation) nor to give 
reliable estimates of treatment means.  The precision of an experiment is increased by 
increasing the number of times each treatment is replicated.  Precision is also increased 
by making sure that animals are as homogeneous as possible, e.g. in terms of weight, age 
and breed.  If there is some variation in weight, for example, then the principle of 
‘blocking’ can be applied.  By putting animals into blocks of similar body weight and 
randomly selecting animals from within each block for the different treatments, it is 
possible that the residual, uncontrollable variation among animals is reduced. Often there 
are several choices for suitable replicates or blocks, e.g. body weight, age, sex.  The use 
of twins is another useful form of blocking with each twin member receiving a different 
treatment.  Researchers are often tempted to make treatment groups similar in all 
respects by balancing all attributes across treatments.  This is wrong and can introduce 
systematic errors.  This method also gives no scope for randomisation of animals to 
treatments.  In practice it is preferable to choose one or, at the most, two attributes for 
blocking.  The choice will depend on the researcher’s knowledge of how the attribute is 
likely to influence the response variable that he/she is primarily interested in.  Thus, sex 
is likely to influence weight gain, but less likely to influence packed blood cell volume. 
 
It is essential to allocate treatments at random to animals.  This is to eliminate any 
subjective bias which may occur (no matter how honest one tries to be).  
Randomisation minimises the risk of systematic errors and helps to ensure that each 
treatment is represented fairly in the trial.  The aim of randomisation is to give each 
animal an equal chance of being allocated to any of the treatments. 
 
Blocking may also be done in time.  It may be that resources or facilities limit the 
number of animals that can be studied at one time.  To achieve the required numbers of 
animals per treatment the experiment can be repeated on separate occasions. Such  
replicates in time are used in the analysis in precisely the same way as blocks based on 
an animal’s attribute such as weight.  Treatments are randomised to animals within each 
time replicate.  Blocking on weight, for example, can also be undertaken within each 
batch or time replicate.  Thus, we can have two levels of blocking. 
 
Exercise 2.4.  Animals in Example B were blocked on age before assigning them to 
treatment.  Considering the range in dates of birth and that the animals were 8 to 9 
months of age at the time of challenge, do you think this was a reasonable idea?  Are 
there any other forms of blocking that you might have considered?  Think of an 
experiment that you have been involved in.  Can you remember any form of blocking 
that might have been applied?  Do you recall how animals were randomised to 
treatments? 
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Numbers of animals 
 
The numbers of animals to use will be based on previous knowledge of the likely 
variation to be expected.  If a researcher does not have sufficient resources he/she will 
have to consider either simplifying of the objectives, carrying out the experiment in 
stages or even abandoning the experiment altogether.  There is little point in 
proceeding with an experiment if it is fairly clear that is cannot meet the objectives! 
 
Experiments should be kept as simple as possible in terms of design, execution and 
analysis.  The most efficient designs are often the most simple to analyse.  For 
simplicity of analysis there should, where possible, be equal numbers of animals 
assigned to each treatment.  Such designs are known as balanced designs.  While this 
is usually relatively easy to organise for crops, it is not always so easy with trials on 
livestock, especially on farms.  Sometimes the researcher may wish to increase the 
sample size for one treatment because of anticipated increased variability in responses 
compared with a control.  Unbalanced experiments lead to more complicated 
statistical analyses which are often more difficult to interpret.  Sometimes the analysis 
has to be done that way, either because it was not possible to make the experiment 
completely balanced in the first place, or because animals may have died during the 
course of the experiment.  Most livestock experimentation leads to some form of 
imbalance.  The art of good experimental design is to try and reduce such imbalance 
to a minimum. 
 
Practical arrangements for assigning animals should be simple to avoid problems, 
confusion and errors when implementing an experiment.  However, this should not be 
at the expense of other considerations, such as avoiding systematic errors.  For 
example, with an on-station trial in individual pens, it might be convenient to put all 
animals on the same diet in adjacent pens.  Animals on different diets will then be in 
different parts of the barn.  However, the barn may not be a uniform environment; 
some areas may be more exposed to, say, wind and cold air.  The differences between 
diets may be confounded with differences in environment, making the results 
impossible to interpret.  By ‘confounded’ we mean that it is impossible to distinguish 
the effect of one factor from another, in this instance between diet and location in the 
barn.  Randomisation should be used to overcome these sorts of problems, even 
though it may introduce some practical complications. 
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Chapter 3    Recognising types of data and data structures 
 

 
Research data consist of observations or measurements recorded on units e.g. animals. 
Although we talk about experimental units in experiments, in surveys we talk about 
sampling units and in observational studies we often talk about observational units.  
To generalise in a way that we can cover each type of study we shall refer to these 
units generically as investigational units.  An investigational unit refers to a unit, 
whether it be a farm, an animal or sample within an animal, in which a measurement 
is made independent of another.  Measurements made on these units such as farm 
size, body weight, growth, PCV, FEC are called variables.  
 
Variables may be of different types and it is important to consider the type of data we 
are dealing with.  In Example A the response variables that have been measured, 
namely body weight, growth rate, PCV and FEC, are known as continuous variables, 
i.e. they can take any value within a reasonable range to a given accuracy.  Thus, 
weight gain ranges from 0.6 to 4.3 kg.  Some of the measurements used to 
characterise the lambs prior to the experiment are discrete, i.e. they can only take on 
only specific not continuous values.  Thus, sex is recorded as 1 (male) and 2 (female).  
These are the only two values that sex can take.   Sometime response variables that 
are measured during the experiment take on the value 0 or 1 only.  This could be, for 
example, mortality or disease. The methods of analysis for continuous and discrete 
variables are very different and need to be considered carefully when planning a trial.  
In general, a larger number of investigational units is needed to investigate 
statistically significant differences between treatments when the outcome is discrete 
(e.g. death) than when it is continuous (e.g. weight gain). 
 
Next we must consider how the data are structured.  Often we find that we have types 
of units occurring at different layers in a study, e.g. farms, plots within farms; or 
farms, animals within farms; or animals, repeated samples within animals.  We often 
take measurements at different layers, e.g. at the farm level we may record certain 
attributes about the household, e.g. numbers of members, size of acreage etc., and at 
the animal level we may measure milk offtake on different occasions.  It is important 
to understand the structure of a data set compiled during a research study, both in 
planning the study and in designing the statistical analysis. 
 
Let us diagramatically see how the Dorper/Red Maasai experiment (data set A) is 
structured.  The first step is to decide what are the investigational units and whether 
these occur at more than one layer.  The investigational unit is that unit which can be 
considered to have been assigned at random to treatments.  The only true 
randomisation that takes place in this experiment is the assignment of lambs to diet.  
Lambs cannot be assigned at random to breeds as a lamb’s breed is part of its genetic 
make up.  The trick though is to recognise that the lambs to be used in the experiment 
for each breed can be assumed to be a random selection from that breed.  Thus, breed 
features as a special type of ‘treatment’. 
 
To summarise, randomisation only takes place at the lamb level – this is both  
within breed and diet.  Thus, the structure of the data comprises just one 
 layer.  Later on we shall see an example of a data structure with more than one layer. 
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We can think of the breed of a lamb and the diet fed to it as being particular attributes 
for that lamb.  Lambs were also ranked within each breed according to their body 
weight and assigned to one of four blocks.  This then is a third attribute.  The data can 
thus be described as follows. 
 
Layer        Investigational                 Attributes                       
                         unit   
 
1                Lamb                                          ………….                      Breed 
                                                                                                            Diet 
                                                                                                            Breed / block 
 
Note the notation ‘breed / block’.  The slash notation means block within breed.  
The three attributes, namely breed, block / breed and diet, are known as fixed effects.  
Lamb can be described as a random effect.  The fixed effects describe the patterns in 
the data - we are interested in determining the mean values calculated from the data 
for each level (e.g. Dorper, Red Maasai) of an effect (or attribute).  For a random 
effect we are not so interested in each level, but instead the overall variation in the 
data expressed by the different lambs.  In this case the random effect represents the 
residual variation among lambs that remains and cannot be explained by the pattern 
expressed by the fixed effects.  This idea can be represented in the form : 
 
  data = pattern + residual 
 
To demonstrate how things can become a little more complicated, suppose that this 
experiment was designed differently.  Instead of lambs selected at random, suppose 
that hyperthetically 8 ewes, each with twins, were selected for each breed.  Instead of 
blocking lambs according to body weight assume that pairs of twins were assigned, 
respectively, at random to one of the two diets. 
 
There are now two levels at which we can consider randomisation to have taken place 
– firstly 8 ewes are selected from each breed, and we assume this to be a random 
selection, and, secondly, twins from each ewe are assigned at random to one of the 
two diets. 
 
Thus, the complete data structure can be described as : 
 
 
 
Layer        Investigational                  Attributes                       
                         unit   
 
1                 Ewe                                          ………….                         Breed 
  
 
2        Lamb                                                                                  Diet   
                                                                                                              Breed.diet 
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In this example, therefore, we need to think more carefully about investigational units.  
Randomisation at the lamb within ewe level ensures that lamb is the investigational 
unit for examining the effect of supplementation.  But what about breed?  The 16 
lambs used within each breed are not independent.  They form 8 pairs of twins.  The 
animals initially selected from each breed were first and foremost the ewes.  The 
investigational unit for comparison of breed is, therefore, the ewe or the pair of litter 
mates.  Thus, there are in this case two sets of investigational units – the ewe (or pair 
of twins) for comparison of breeds, and the lamb for comparison of diets.  This may 
be a little difficult to understand when none of the measurements are made on the ewe 
itself.  Here, however, we can represent the ‘ewe measurement’ by the average weight 
of its two offspring.   Breed means are compared in this variation among ewes. 
 
The expression 
 
  data = pattern + residual 
 
still applies but the residual has two components : ewe within breed and lamb within 
ewe.  The pattern is still described by fixed effects associated with breed and diet.  This 
type of structure is hierarchial or multilevel in nature. Note that in the above figure we 
have also included an interaction term breed.diet  (we could have also included it in the 
first example).  The interaction term determines whether the effect of supplementation 
differs according to the breed of lamb.  This attribute occurs at the lamb layer. 
 
Exercise 3.1.  Draw a diagram to show how the data in Example data set B are 
structured, taking into account that repeated measurements in time are taken on the 
individual animals.   
 
We shall not deal with multilevel structures from now on in this course, but it is 
nevertheless important to be able to recognise the structure in one’s data.  It is also 
important to appreciate what type of data structure is likely to be produced when an 
experiment is being planned.  This might have important consequences for sample 
size and statistical analysis. 
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Chapter 4.    Exploring patterns and variation 
 
 
Once we understand the structure of the data that we are handling we can start to 
identify the patterns and variations in the data. 
 
Insufficient attention is usually given to preliminary investigations of data from 
experiments prior to their formal statistical analysis.  All too often the researcher is 
keen to carry out a statistical analysis and get a P-value, without giving due attention 
to all the information provided in the data.  With sensible preliminary investigations 
the researcher should be able to identify definite patterns in the data, gain insight into 
the variability in his/her data and detect any strange observations which need 
following up.  He/she may even come across some unexpected patterns which he/she 
would wish to investigate further. 
 
Preliminary investigations allow one to look closely at the data collected in one’s 
experiment.  As has already been described, data can be described using the 
expression: 
 
  data = pattern + residual 
 
‘Pattern’ is the result of factors (or fixed effects) such as breed, diet and other 
attributes such as sex, which can influence a response, such as weight gain.  
Identifying the pattern, e.g. components due to breed and diet, is therefore an 
important part of the analysis.  Other parts of the pattern may well be introduced by 
the way the experiment is set out – differences between blocks, for example.   
 
‘Residual’ is the remaining variation that exists from animal to animal and that cannot 
be explained by the way the pattern is defined. 
 
Both pattern and residual should be studied in initial investigations of the data.  The 
results of these investigations will often help to define the way the final analysis is 
done.  Useful tools include descriptive statistics and graphs such as boxplots and 
scatterplots.   
 
One of the first steps in analysing research data should be to examine the frequencies of 
different values recorded for the variables measured.  This will help to order the data in 
some way and to summarise their main features, and may also help to spot data errors or 
extreme values.  We shall first use Example Data Set A. 
 
 
Frequency table 
 
A useful starting point is to examine the range spanned by the data.  To do this one finds 
the lowest and highest value of a variable (e.g. PCV) and divides the range into a 
reasonable number of intervals.   The numbers of data values that occur within each 
interval are counted and made into a table as shown below:   
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Table 4.1.  Frequency distributions of PCV among the 32 lambs in Example A. 
 
PCV (%)            Frequency of      Relative     
class interval         animals                     frequency (%) 
___________________________________________________ 
 
10 - 12       2       6               
13 - 15                2        6              
16 - 18                 0        0              
19 - 21                7      22             
22 - 24              8      25              
25 - 27               8     25               
28 - 30                4     12              
31 - 33                   0       0              
34 - 36                 1       3        
___________________________________________________    
Total    32   100 
___________________________________________________ 
 
 
Having calculated the number of animals in each class interval, the relative frequency, 
which is the percentage of values contained in each interval, can then be calculated.   
This shows how the data are distributed.  The table shows that a majority of animals 
have PCVs between 19 and 30.  Four animals have PCVs below and one animal has a 
PCV above this range. 
 
As shown in the next table however, the frequency distribution for FEC is very different 
with the majority of values at the lower end of the range.  The distribution is clearly not 
symmetric and, although this distribution may be partly influenced by the pattern 
associated with breed, diet etc., it is likely that the residual distribution is also 
asymmetric.  
 
 
Table 4.2.  Frequency distribution of faecal egg count (FEC) among the 32 lambs in    
                   Example A. 
 
FEC (e.p.g.)  Frequency  Relative 
class interval  of animals  frequency (%) 
_______________________________________________________ 
 
     0 -  700     12     38 
 800 - 1500       8     25 
1600 - 2300       3       9 
2400 - 3100       5     16 
3200 - 3900       0       0 
4000 - 4700       0       0 
4800 - 5500       2       6 
5600 - 6300       1       3 
6400 - 7100       1       3 
________________________________________________________ 
   Total                 32   100   
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Histogram 
 
The above tables can be presented pictorially in the form of a diagram, known as a 
histogram.  A histogram helps to identify the shape of the distribution.  Sometimes the 
histogram is more or less symmetrical, with the bulk of the data gathered near the centre 
and the proportions of data on each side roughly balancing each other.  Sometimes the 
histogram is skewed.  This means that the data are rather bunched up to one side.   The 
figure illustrates the skewed distribution of FEC.  As already shown in the above table 
there are more data values to the left than the right.  Biological data often belong to a 
normal distribution; the frequency distribution is `bell-shaped'.  The distribution of 
PCV approximates to this shape.  The distribution of FEC does not.  As we shall see 
later some of the statistical methods that we shall use require data to be distributed 
normally.  Thus, we shall need to take into account the fact that FEC follows a skewed 
distribution in our final analysis.    
 
 

 
 
Fig. 4.1  Histogram of frequency distribution of FEC among the 32 lambs in Example A. 
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Scatter plots 
 
Graphs derived by plotting one variable against another are commonly used to examine 
relationships between two variables.  The next figure shows a scatterplot of PCV and 
FEC.   Such a scatterplot can also indicate outliers (i.e. data values which are rather 
extreme and appear different from the others).  Such outliers may be due to data errors.  
The figure shows one or two possible outliers.  Let us assume that during data entry 
lamb 94 has had its PCV digits transposed by mistake from 13 (see data in Table 1.1) to 
31.  With such a high FEC its PCV value is somewhat away from the others towards the 
top right corner of the diagram.  Examination of the input data shows that a mistake has 
been made in data entry.   The value to the bottom of the graph, however, is as recorded. 
 
 

 
Fig. 4.2   Scatter plot of PCV versus FEC with mistake in PCV value (31 rather than      
              13%) for lamb 94 in Example A. 
 
 
 
Box and whisker plots 
 
Of course when all the data are described together as above variations due to diet and 
breed are hidden.  If possible it is best to summarise the data in each group separately.  A 
nice way to do this is to use what is known as Turkey's box and whisker plot, which 
displays the range, median and quartiles for each group alongside each other.  
 
The median is the middle value.  This differs from the mean which is the average of all 
the data values.  The upper and lower quartiles are the points at which one quarter of 
the data values are above or below, respectively. 
 
The following figure shows the box and whisker plot for FECs for each of the 4 breed x 
supplementation treatments.  The middle horizontal line represents the median (i.e. the 
middle point).  The box contains the middle half of the data (between the quartiles  
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represented by the horizontal lines at the extremes of the boxes), and the upper and lower 
vertical lines cover the rest of the data. 
 
 
 

 
 
Fig. 4.3  Tukey’s box and whisker plot for FEC for each breed x supplementation group 
in Example A.  The codes are : 1 (Dorper / non-supplemented); 2 (Dorper / 
supplemented); 3 (Red Maasai / non-supplemented); 4 (Red Maasai / supplemented) 
 
 
The boxplot shows two things.  Not only is the mean FEC lower in the Red Maasai 
than in the Dorper lambs but so is the variation (we may need to take this into account 
in the way we analyse the data).  The whiskers (the upper and lower vertical lines) 
also illustrate any skewness in the data.  Thus, the boxplot is a useful tool for 
describing both pattern and residual. 
 
We shall concentrate from here on mainly on the analysis of weight gain.  The 
following box plot shows us that there is less to be concerned about with different 
levels of variation, except that there appears to be little more variation in weight gain 
amongst animals in the second group.  
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Fig. 4.4  Tukey’s box and whisker plot for weight gain for each breed x 
supplementation group in Example A.  (See Fig. 4.3 for description of group codes).  
 
 
 
Plotting these data alternatively as a scatter plot enables us to examine the individual 
values. 
 
 

 
 
Fig. 4.5  Scatter plot of individual weight gains for each breed x supplementation   
              Group in Example A.  (See Fig. 4.3 for description of group codes.) 
 
 
 
 
 



 20

Blocking on initial body weight was a feature of the experimental design.  To see 
what likely impact this has had in reducing the residual variation in weight gain we 
can produce a box plot for block.   
 
 
 

 
 
Fig. 4.6  Tukey’s box and whisker plot for weight gain for each block defined for  
              assignment of lambs to supplementation groups in Experiment A.  Blocks 1-4  
              refer to Dorper and blocks 5-8 to Red Maasai lambs. 
 
 
The plot shows that there is little variation among block means within breeds 
suggesting that in this experiment blocking had little impact.  Thus, in retrospect, 
from a design point of view, completely randomising the lambs to the supplement and 
non-supplementation groups would have been just as satisfactory.   
 
Sex might feature in the analysis as a factor since it is well known that males grow 
faster than females.  However, the plot below suggests that the difference in weight 
gain for the two sexes is unlikely to feature as an important contribution to the pattern. 
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Fig. 4.7  Tukey’s box and whisker plot for weight gain for each sex (1: males; 2: 
females) in Example A. 

 
 

Table of means 
 
The above methods of presentation allows one to see how the breed x 
supplementation groups interact.  By interaction we mean that the effect of one factor 
(e.g. supplementation) is different at different levels of another (e.g. breed).  It may 
also be instructive to produce a 2-way table of means to examine further how weight 
gain varies across both breed and diet.  The table below demonstrates a clear effect of 
supplementation on weight gain and a smaller effect of breed (Red Maasai grew faster 
than Dorpers).  Comparison between the four values within the body of the table 
suggests that the increase in weight gain due to supplementation might be slightly 
greater for the Red Maasai than the Dorper.  We shall need to check this in the 
statistical analysis.  The tables of means for PCV and FEC, however, show no 
evidence for an interaction. 
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Table 4.3  Tables of mean values for breed x supplementation groups for weight gain, 
PCV and FEC of lambs in Example A. 
 
 

WTGAIN 
  
                     Mean 
         SUPP           1           2        Mean 
        BREED 
            1       1.325       2.388       1.856 
            2       1.488       3.475       2.481 
  
         Mean       1.406       2.931       2.169 
  
PCV 
                      Mean 
         SUPP           1           2        Mean 
        BREED 
            1       18.62       23.00       20.81 
            2       24.75       26.75       25.75 
  
         Mean       21.69       24.87       23.28 
  
  
FEC 
                      Mean 
         SUPP           1           2        Mean 
        BREED 
            1        3194        2081        2638 
            2         906         900         903 
  
         Mean        2050        1491        1770 
  
 
In conclusion, we have been able to carry out a lot of exploratory analysis using very 
simple techniques.  We have seen how we can spot possible outliers in the data that 
may be due to mistakes in data entry.  We have also had a good idea of the effect that 
input supplementation has had on response variables for each breed.  There may or 
may not be an interaction between breed and supplementation in relation to weight 
gain. 
 
We were able to examine the residual variation among observations, i.e. the 
variability which was unexplained by the diet x breed pattern, using scatterplots.  We 
suspect that some of this residual variation is unlikely to be explained by differences 
between the blocks in the experiment, and also that there is unlikely to be a major sex 
effect.  We have therefore been able to deduce quite a lot about the likely effects of 
our factors from this preliminary analysis. 
 
What we have not been able to do is look at all the above attributes together.  We 
have only looked at “slices” of the data - i.e. we separately looked at patterns due to 
breed and supplementation and the residual variability ignoring any effects of blocks, 
and then looked at the patterns due to blocks and to sex.  It would have been more 
complicated to look at pattern due to blocks, sex, breed and supplementation together, 
and then inspect the resulting residual variability.  To do this we need to take the 
analysis further and use methods such as analysis of variance.  This is described in the 
next chapter. 
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Example B provides a different form of example.  Data are not collected at two time 
points at the beginning and end of the experiment as in Example A but at frequent 
time periods during the course of the experiment.  Exploratory analysis is particularly 
needed in this case to determine how to go about the statistical analysis.  The most 
useful thing to do is to first plot the data as shown in Fig. 4.8.  This figure shows body 
weight changes for each individual animal in the three treatment groups. 
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Fig. 4.8  Body weight changes for individual animals in the three immunised groups  
              in Example B. 
 
 
Exercise 4.1  Consider the graphs in the above figure.  Comment on the overall trends 
both within and between the 3 treatment groups.  Are there any questions that you 
would like to pose to the researcher in relation to any odd patterns in gains or losses 
in body weights?  
 
The following figure shows similar graphs for PCV.  The separation of PCVs among 
the control animals illustrates how the two animals 7 and 13 failed to be infected.  
There are one or two cases where a sudden rise or fall in PCV from one time point to 
the next for an individual animal may indicate a data error.  These could be checked 
against the original recording sheet. 
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Fig.  4.9  Changes in PCV for individual animals in the three immunised groups in  
               Example B. 
 
There are different forms of outliers in this experiment, some that can justifiably be 
excluded in the analysis and others not so.  An outlier is an observation, or group of 
observations, that does not conform to the general pattern determined by the other 
points.  Thus, it is clear that the two non-infected control animals should be excluded 
because they did not conform to the experimental description of animals in that group.  
Animal 16 in the ARF1 group was also excluded because it rapidly lost weight for 
reasons that veterinary opinion believed were not due to trypanosomosis.  Exclusion 
of this animal, however, was not so clear cut as the two controls since no definite 
diagnosis of the clinical condition was possible.  Other possible outliers are the  
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individual PCV values mentioned above that show large deviations from their 
adjacent values.   
 
As a general rule an outlier should not be excluded if there is no clear reason for 
doing so.  In the final analysis, if a particular observation appears to have a major 
influence on the overall pattern, then the analysis can be repeated without this 
observation to see whether it results in any change in the pattern.  If any outliers are 
excluded then this exclusion must be mentioned in the final report.  The criteria for 
rejection of observations should be clearly stated in order to convince the reader that 
they are not biased in favour of the hypothesis being tested. 
 
The following figure shows average trends for weight gain and changes in PCV, 
excluding the 2 control and one ARF1 animal described above.  It is important to 
appreciate that once an animal leaves the experiment it no longer features in the 
remaining part of the curve.  In particular by day 139 only one control and 3 ARF1 
animals remained.  Therefore, caution is needed in the interpretation of such curves.  
The apparent increase in body weight from about day 115 in the ARF1 immunised 
animals, for instance, was due to the loss of two animals with lower than average 
body weight shortly before this day (see Fig. 4.8).  Nevertheless, averaging the data in 
this way is a useful approach for a first examination of the different trends. 
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Fig.  4.10  Changes in mean body weight and PCV in the 3 treatment groups 
excluding 2 control animals and one animal from the ARF1 group of Example B. 
 
 
Exercise 4.2  Study the curves for body weight and PCV in Figs. 4.7 – 4.9.  Define one 
variable that can be derived from the weight curves and one variable from the PCV 
curves that you feel best define differences in pattern between groups and that might 
be used for further statistical analysis. 
 
Analysis of longitudinal data such as in Example B can be complex.  It is often a good 
idea to see how one can simplify the patterns.  Thus, one can represent trends by a 
slope parameter, describe extreme values (maxima or minima) reached, the time when 
this occur, or summarise the patterns by calculating means over particular time 
periods of interest.  Such approaches lend themselves to much simpler forms of 
statistical analysis which are often easier to interpret.  Indeed by doing so we reduce 
the data structure from two layers representing animal and day within animal to just 
one representing animal only.  This is because we have derived variables that 
represent summaries of data calculated over periods of time. 
 
 
It was decided to represent the data in Experiment B by slopes representing the 
average growth rates to 69 and 139 days post infection and the mean PCV between 49 
and 56 days when minimum values in PCV were generally reached.  The data file 
used to analyse these data and containing these variables is shown in Table 4.4.  Sixty 
nine days were chosen because the majority of cattle were still retained in the 
experiment on that day (see Table 1.2).  Growth rates to 139 days used all available 
data for each animal up to day 139, or earlier if treated.  Growth rates were calculated 
by linear regression – this method is described in the next chapter. 
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Table 4.4.  Summary variables for growth rates to days 69 and 139 and mean PCV 
between days 49 and 56 derived from data for Example B shown in Tables 1.2 and 1.3 
 
 

        Growth Growth  
      Weight PCV rate to rate to Mean PCV 
 Imm.  Date of  Initial day 0 day 0 day 69 day 69 day 49-56 

Record group Sex birth Block wt. (kg) (kg) (kg) (g/d) (g/d) (%) 
           

1 A F 04/06 1 142 180 39.2       64  -18 18.6 
2 A M 18/07 2 112 148 33.6     304  191 20.5 
3 A M 01/07 2 120 150 32.5    -165 -331 16.1 
4 A F 04/07 2 122 156 30.7      275  236 20.9 
5 A M 08/07 2 132 160 36.5      -88 -196 15.9 
7 A F 24/06 1 108 147 29.8    -156 -156 12.0 
8 B F 05/07 2 114 139 31.8      -66   -66 13.4 
9 B F 01/06 1 160 198 36.8          1   10 18.7 
10 B M 05/07 2 136 172 34.9      118   -39 20.0 
11 B F 15/07 2 100 118 30.0      361   271 20.9 
12 B F 02/06 1 140 200 36.7       72   -78 18.1 
13 B F 04/07 2 136 210 36.2        11    97 20.1 
14 B M 20/06 1 112 130 33.7     175    92 20.2 
15 C M 28/06 2 122 152 30.6   -143 -212 13.2 
16 C F 06/06 1 * 144 28.9      -58 -275 15.2 
18 C M 10/06 1 124 120 25.3   -168 -198 14.3 
20 C F 02/07 2 114 138 35.6   -214 -166 15.0 
21 C M 01/07 2 126 164 33.3   -183 -183 12.6 

           
 
 
Exercise 4.3  The following two diagrams give the box plots for the summary 
variables growth rate to 69 days and mean PCV between 49 and 56 days.  Comment 
on what they show. 
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Variance and standard deviation 
 
Before proceeding to the next chapter let us see how we define variation in a 
statistical way.  The most common measure of variability is the variance or standard 
deviation.    The variance of a group of observations is calculated as the sum of squares 
of deviations from the mean divided by one fewer than the number of observations. 
 
Thus, the variance of the 6-month body weights for Dorper (breed 1) without 
supplementation (code 1) in Example data set A is calculated as: 
 
 [(8.9 – 14.075)2 + (10.1 – 14.075)2 +...+ (17.7-14.075)2] /7 
 
 = [(-5.175)2 + (-3.975)2  +...+ (3.635)2 ]/7 = 82.755/7 = 11.8221 kg2 
 
 
An alternative formula, which is easier to use with a large number of observations, is to 
calculate the sum of each value squared, subtract the total squared divided by the number 
of observations, and divide the answer by the number of observations less one. 
 
Using this method the variance becomes  
 
 {8.92 + 10.12 + ....+ 17.72 - (112.62/8)}/7 
 
 = (1667.6 – 1584.845)/7 = 82.755/7 = 11.8221 kg2 and the answer is the same.  
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While it is often convenient to use the variance based on squared deviations as a measure 
of dispersion or variation of the data, it is often usual also to think of this variation in 
terms of the original units.  By taking the square root of the variance one returns to the 
original scale of measurement.  The square root of the variance is known as the 
standard deviation (SD).  
       
Thus, the standard deviation  =  √11.8221  = 3.438 kg 
 
So what does this mean?  The standard deviation gives some measure of the spread of 
the data.  Indeed, if we calculate mean ± 2 x standard deviations we obtain what is 
known as a confidence interval which includes approximately 95% of the data. 
 
 
Degrees of freedom 
 
The denominator in the formula for the variance (the number of observations minus 1, or 
n-1) is known as the degrees of freedom.  The degrees of freedom represent the 
independent freedom with which observations can be used in the formula for the  
variance.  The observations (which we shall write yi (i = 1, ….., n)) are first used to 
calculate the mean, m.  The mean is then used in the calculation of the sum of squares of 
deviations from the mean, namely sum (yi - m)2.  Observations can be used 
independently to provide the first n-1 deviations squared, but the nth observation does not 
provide new independent information since it can be derived from a knowledge of y1, y2, 
….., yn-1 and m = (y1 + y2 + ….. + yn / n).  This results in the loss of one degree of 
freedom.  In other words a variance or standard deviation has n-1 degrees of freedom. 
 
Coefficient of variation 
 
We have shown that the variation among a set of observations can be measured by the 
variance or the standard deviation. There are occasions when we wish to compare the 
relative amounts of variation between two variables having different means, e.g. birth 
weights of calves and adult weights of cows.  Since the adult weights would be expected 
to have a larger standard deviation because of the larger values involved, a comparison 
of the two standard deviations may not very helpful.  We might also be interested in  
comparing the relative amounts of variation between different characteristics or traits of 
the same animals, e.g. weaning weights and packed cell volumes of lambs.  The 
coefficient of variation (CV), which is calculated as the standard deviation expressed as 
a percentage of the mean, is useful for such comparison.  
 
Thus, for unsupplement Dorpers the coefficient of variation for 6-month body weight 
 
 = (3.438/14.075) x 100  = 24.4% 
 
 
The CV is independent of the unit of measurement.  For body weight or packed cell 
volume, for example, coefficients of variation of the order of 10 - 15% depending on the 
type of experiment / field study might often be expected.  Growth rates, however, often 
have higher coefficients of variation, also variables such as FEC that are skew.  This 
example shows that the spread of weights and PCVs in this group of lambs is wider than 
one would normally expect.  But remember that this ignores the effects of breed, 
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supplementation, etc.  Once these are taken into account in the calculation of the residual 
variation, the coefficient of variation may be reduced. 
 
Table 4.2 summarises the descriptive statistics for the 32 animals in the Example A data 
set.  Note the high CVs for all variables, particularly for weight gain and FEC. In a real 
situation the comparatively large CVs for body weight and PCV may have been 
associated with exposure of these lambs to high levels of helminth infestation.  However, 
these data have been artificially created and have probably been made more variable 
than would be the case in real life.  The medians represent the mid points of the 
distributions, i.e. the value in the middle. 
 
 
 
Table 4.2  Descriptive statistics of variables measured in Example A (number of    
animals = 32) 
 
 
Variable   Mean  Median  Standard Coefficient 
        deviation of variation 
 
3-month weight (kg)             11.69  11.60    2. 71    23.2 
6-month weight (kg)  13.61  13.15    2.92    21.49 
Weight gain (kg)    2.17    1.95    1.08    49.7 
PCV (%)   22.72  23.50    5.35    23.6 
FEC (epg)    1770  1200   1686    95.3 
______________________________________________________________________ 
 
 
Exercise 4.4. Calculate the mean, median, standard deviation and coefficient of 
variation of the PCVs of the 8 lambs in breed 1 that were not supplemented. 
 
 
Standard error  
 
Suppose the experiment were repeated several times.  Each time we would calculate a 
mean, say for breed 1, without supplementation.  Each mean would be different.  Thus 
there would be variability among means just as there is variability among individual 
observations in each sample.  However, since each mean is averaged over 8 
observations, the variation among means would be smaller than the variation among 
individual observations.  The variance of a mean can be calculated as the average of the 
variances calculated each time the experiment is conducted, divided by the number of 
observations used for calculating each mean.  The standard deviation of the mean is the 
square root of the variance of the mean.  The standard deviation of the mean is known as 
the standard error. 
 
The standard deviation is a useful measure of the variation of an individual observation. 
The standard error is a useful measure of the variation of a mean.  
 
Normally we would not repeat an experiment to calculate the average variation of the 
mean.  Instead, we pretend that the variance of individual observations will remain 
constant from experiment to experiment (in practice it won't vary much) and use the 
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value already calculated as an estimate of this average.  Thus, we can then calculate, for 
the 6-month body weights of non-supplemented Dorper lambs:  
 
variance of mean = 11.8221/8 = 1.4778 kg2 
 
standard error   = √1.4778    = 1.22 kg 
 
The standard error or variance of a mean decreases as the number of observations 
increases.  For example, if 24 lambs were used for each breed then, for breed 1, non-
supplemented,  
 
variance of mean = 11.8212/12  =  0.9926 kg2  
standard error   = 1.00 kg  
 
Note that this standard error is lower than the value calculated above with 8 sheep. 
 
We can calculate the standard error for other statistics such as the slope of the 
relationship between two variables.  The formula is given in the next section, but the 
principle is the same – the standard error represents the standard deviation of a mean, 
of a slope, or of whatever other statistic is used. 
 
Confidence interval 
 
The standard error can be used to develop what is known as a confidence interval.  
Thus, for the mean, a confidence interval is a range between upper and lower limits, 
which is expected to include at a given level of probability the true (or population) mean 
value.  This is the value for which the sample in the experiment is providing an unbiased 
estimate. 
 
Usually we talk about the 95% confidence interval.  This is the interval in which the true 
mean should lie with a 95%, or 19 times in 20, chance of being correct.  Similarly, the 
99% confidence interval gives the range within which we expect the true mean to lie 
with a 99%, or 99 times in 100, chance of being correct. 
 
The approximate 95% confidence interval can be calculated as the sample mean plus or 
minus twice the standard error. Similarly, the 99% confidence interval is the sample 
mean plus or minus approximately 2.6 times the standard error.    
 
Thus the approximate 95% confidence interval for the mean 6-month body weight of 
non-supplemented Dorper lambs is: 
  
  14.08  ± 2 x 1.22 
  
 = (11.64 to 16.52) kg 
 
 
Similarly, the approximate 99% confidence interval is 
 
  14.08  ± 2.6 x 1.22 
    
 = (10.91 to 17.25) kg 
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As one might expect, the 99% confidence interval is wider than the 95% one.  Another 
way of thinking about this is to say that if the experiment were repeated 100 times then 
we would expect that on 99 occasions the sample mean would fall within the range 
10.91 to 17.25 kg, and on the other occasion it would fall outside. 
 
In summary, therefore, given that we know how to calculate the standard error of a 
statistic (e.g. mean, or slope) determined from the experiment, we are able to 
determine a likely range within which the true (or population) value for the statistic 
lies. 
 
 
Exercise 4.5  Using the results of Exercise 4.4, calculate the standard error and 95% 
confidence interval for mean PCV of non-supplemented lambs of breed 1. 
 
 
Binomial and Poisson variables 
 
Sometimes response variables take on the values 0 or 1.  These could be, for example, 
mortality or disease.  The variables are sometimes described as discrete variables, i.e. 
they can only take on discrete and not continuous values.  Variables such as body weight 
are known as continuous variables, i.e. they can take on any value within a reasonable 
range to a given degree of accuracy.  Discrete variables such as mortality and disease 
often belong to distributions that are not normal distributions, but binomial or Poisson 
distributions.  Discrete variables are also sometimes called binary variables.  For 
example, suppose in a sample of 20 lambs, 4 die before weaning.  We can record a death 
as 1, a lamb that survived as 0.  The proportion of lambs that died is p = 4/20 = 0.2.  This 
is simply the mean of the 0s and 1s, i.e. (1+1+1+1+0+.... +0)/20 = 4/20 = 0.2.  Mortality 
is typical of a variable that is associated with a probability of occurrence p.  Such 
variables typically belong to a binomial distribution. 
 
We have seen that the mean = p, and that this can be calculated in an analogous way to 
that of a normally distributed variable.  The binomial distribution, however, has a special 
expression for the variance, namely p(1-p).  Thus if p = 0.2, then variance = 0.2 x 0.8 = 
0.16. 
 
The standard deviation and standard error are similarly calculated as for a continuous 
variable, i.e. 
 
 standard deviation = √0.16 = 0.4 
 standard error     = √0.16/20  = 0.089 
 
The distribution of certain binary data is often closer to that of a Poisson distribution, a 
distribution sometimes associated with rare events.  Incidence of trypanosomosis, for 
example, can often be considered as being associated with a Poisson distribution, 
particularly if the prevalence is very low (e.g. 5%).  The mean is the same as that for the 
binomial, namely p.  The variance, however, is different from that of the binomial 
distribution and is also p.  Thus, if the prevalence of trypanosome infections is 0.06 in a 
sample of 100 cattle, (i.e. 6/100 are detected parasitaemic), and a Poisson distribution is 
assumed then the variance is also 0.06 and  
 
 standard deviation   = √0.06  =  0.24 
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 standard error          = √0.6/100 = 0.024 
 
In practice when p is small (<0.1), it does not matter whether one assumes a binomial or 
Poisson distribution.  
 
A Poisson distribution is often used for analysing count data, e.g. ticks on an animal.  
More animals will be found with few ticks than with many ticks.  Thus, the frequency 
distribution will be skew.  The distribution often follows a Poisson distribution. 
 
Exercise 4.6  In a sample of 80 sheep 5 are detected with trypanosomes.  Calculate the 
standard error of the prevalence assuming first a Poisson distribution and second a 
binomial distribution.  Calculate the 95% confidence interval using the formula given 
for the normal distribution. 
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Chapter 5   Simple statistical models and analysis of variance 
 

 
So far in this course we have seen exploratory data analysis to be a useful method for 
obtaining a preliminary idea of the primary form of the patterns in the data and how 
we might go about analysing the data.  With exploratory investigations, however, we 
are not always able to look at the effects of all different sources of variation 
simultaneously.  This is where statistical modelling can play a role.  The underlying 
philosophy is still one of separating data into  
 

pattern + residual  
 

and quantifying and describing both. 
 
We shall first use two simple examples : 
 
 
a) a simple linear regression 
b) a balanced factorial analysis of variance 
 
 
Simple linear regression 
 
Let us consider the association between PCV and FEC in Example A and ignore, for 
the time being, that lambs were of different breeds and were fed on different diets.  
From the scatter plot given in the previous chapter we can see that there is a strong 
association between PCV and FEC.  In terms of the idea that 
 
  data = pattern + residual 
 
our pattern can be described by a linear equation i.e. an equation of the form 
 
   PCV = a + b * FEC  
 
where a is the intercept on the PCV (y) axis and b is the slope or gradient of the line.  
We often call this slope the regression coefficient of PCV (y) on FEC (x).  Our model 
for the data is therefore : 
 

PCV = a + b * FEC + residual 
 
PCV (y) is often referred to as the dependent or response variable and FEC (x) as the 
independent or explanatory variable. 
 
The following figure shows the regression line superimposed on the scatter of points. 
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Fig. 5.1  Regression line of PCV on FEC for the 32 lambs in Experiment A.  The 
slope is designated by ‘b’ and the point where the line intercepts the y-axis by ‘a’ in 
the equation y = a + bx. 
 
 
The calculations of a and b are fairly straight forward and it is helpful to understand 
how these are done in the simple case.  Sometimes one may be working in the field, 
without immediate access to a computer, and so it is useful to know how to do simple 
calculations on a calculator. 
 
If we write yi to refer to the ith value of the dependent variable PCV such that i ranges 
from 1 to 32, and write xi to refer to the ith value of the independent variable FEC, 
then we can produce an analysis of variance table to determine the proportion of the 
total variation in y that can be accounted for by x.  Analysis of variance is a 
descriptive tool in statistical analysis.  Its purpose is to describe the amounts of 
different sources of variation attributable to different attributes and to compare them 
to the residual, uncontrollable variation.  The beauty of this method is that it can look 
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at different effects together.  We shall be considering different forms of analysis of 
variance later.  However, for the time being, consider that analysis of regression is 
just one form of analysis of variance.   
 
An analysis of variance table comprises three columns : degrees of freedom (df), sum 
of squares (SS) and mean squares (MS), which equals SS/df.  The residual MS is the 
same as the residual variance.  The variance ratio (VR), as we shall see, is the ratio of 
the regression MS to the residual MS. 
 
Source of variation df    SS MS   VR     
______________________________________________________ 
  Regression   1     
  Residual  30     
______________________________________________________   
   Total              31   
 
The degrees of freedom for the total are calculated as (32-1), i.e. the total number of 
observations minus 1.  This is precisely as is done for the calculation of a variance.  
This takes care of the intercept a in the equation.  One further degree of freedom is 
used for fitting the slope b, leaving 30 degrees of freedom for the residual term. 
 
Total corrected sum of squares for PCV = ∑yi

2 – (∑yi)2 /32 
                                                   
     = 17405 – 7272 /32 
                                                  
     = 888.4688  
 
The above formula is precisely that used for the numerator in the calculation of a 
variance in the previous chapter. 
 
Let us write this as Syy where Syy signifies the total corrected sums of squares of y 
ignoring any pattern displayed by the regression line. Thus, 
 
        Syy = ∑yi

2 – (∑yi)2 / 32  
 
Similarly, total sum of squares for FEC can be written as: 
                                     
        Sxx = ∑xi

2 – (∑xi)2 /32 
                                     
    = 188,382,500 – 56,6502 /32 
                                   
     = 88,094,297  
 
We also need the total sum of cross products  = ∑xi yi – (∑xi∑yi) /32 which we shall 
write as Sxy. 
 
                                                 
    Thus, Sxy  = 1,082,200 – (56,650 x 727) /32 
                                                 
                     =  - 204,817  
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The analysis of variance table for this regression analysis can then be written as shown 
below.   
 
The calculation of the sums of squares (SS) for the regression line are as shown 
 
 
   df  SS    MS 
Regression 1  (Sxy)2/Sxx 
Residual 30  Syy – (Sxy)2/Sxx 
________________________________________________ 
Total  31  Syy 
 
where the expression (Sxy)2/Sx = 204,8172 / 88,094,297 represents the sum of squares 
explained by the regression of PCV on FEC. 
 
 
The MS column is then calculated as SS/df.  Thus it can be seen that the total MS is 
simply the variance of PCV (i.e. ignoring any fit of a regression line to FEC).  The 
residual MS is an expression for the residual variance of the PCVs left over after fitting 
the regression line.  To understand this further imagine vertical lines drawn from each 
point in Fig. 5.1 as far as the regression line.  The sum of squares of these deviations 
from the line gives the residual sum of squares.  Thus, again, the residual variance 
represents that variation remaining in the data after the pattern described by the 
regression line is fitted. 
 
In addition, 
 
Regression coefficient (b) = Sxy

 / Sxx
  

 

Intercept (a) =  xby −  
 
Regression equation becomes xx bbyy +−= .  This is the pattern that we are 
attempting to describe. 
 
SE of b = √ (residual MS/Sxx) 
 
Correlation coefficient = √ [Sxy)2 /(Sxx Syy)]                             

          

The SE measures the precision with which we can define b.  We can use this standard 
error, just in the same way as has been shown for a mean, for determining a confidence 
interval for b. 
 
The correlation coefficient (0 ≤ r ≤ 1) is a measure of association between y and x.  If r = 
0 there is no association i.e. no pattern; if r = 1 the association is perfect, i.e. all points lie 
on a straight line.  The correlation coefficient is particularly useful for determining the 
degree of association between two variables x and y when neither is considered as the 
dependent variable. 
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The above formulae lead to the following analysis of variance.  Note again that the MS 
is calculated as SS / df 
 
 
Source of variation df    SS    MS     
______________________________________________________ 
  Regression   1  476.1952 476.1952   
  Residual  30    412.2736   13.7425 
______________________________________________________   
   Total              31  888.4688   28.6603 
 
Regression coefficient (b) = -0.00232.  This is interpreted as meaning that PCV 
decreases by 0.00232 percentage units for one egg per gram increase in FEC, or 
alternatively as 0.232 percentage units per 100 eggs per gram. 
 
Intercept (a) = 26.8%. 
 
Thus, regression equation is y = 26.8 – 0.00232x 
 
 
Exercise 5.1  Calculate the SE of b in the above example and the correlation 
coefficient (r or ρ).  What you can say about the estimated population regression 
coefficient given the size of the SE? 
 
 
Exercise 5.2  Fit the above linear regression using Genstat and study the output.  
Certain observations are identified in the output as either having influence on the 
slope of the line or having large residuals.  See if you can identify these in Fig. 5.1 of 
these notes.  Fit the line again without the influential points.  What effect has this on 
the slope? 
 
 
So what can we deduce from all of this?  First of all the regression equation has 
accounted for over half the sums of squares for PCV.  Furthermore, the variance has 
been reduced by over half (from 28.6603 to 13.7425% units2) when the pattern in our 
data has been taken into account.  The pattern is described by line intersecting the y-axis 
at a PCV of 26.8% and decreasing by 0.232 % units of PCV for an increase of 100 e.p.g. 
in FEC.  If we multiply by the SE of b by 2 we can see that 95% confidence limits for 
the true slope are –0.00232 ± 2 x 0.00039 = (-0.00310 to -0.00154% units / e.p.g.).  The 
correlation coefficient shows that there is a fairly good correlation between PCV and 
FEC. 
 
 
Analysis of variance for designed experiments 
 
Let us now look at the form the analysis of variance takes for designed experiments. 
Before doing so let us see how we can express our statistical model algebraically. 
Statistical concepts are often presented mathematically.  It is important for biologists not 
to be frightened by the formulae that sometimes appear in scientific papers and we shall 
attempt to remove the mystike.  Formulae are often the easiest way to describe the 
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statistical methods that have been applied.  As we have already seen there is little 
difficulty in writing down the formula for a regression line. 
 
If we look again at the structure of our example data set we can see that each variable, 3-
month body weight, 6-month body weight, PCV, FEC and weight gain, can be 
characterised by other attributes.  For example, records 1-8 all refer to lambs from breed 
1.  They are also characterised by the fact that these lambs were not supplemented.  
Thus, we can say that each record is made up of a component due to breed and a 
component due to diet. We shall use a letter to refer to each of these components, namely 
b (breed), d (diet).  These components are often referred to as parameters or effects.  It 
is common to give a subscript to each parameter level.  Thus, we have 2 breeds.  Let us 
refer to them as b1, b2.   Similarly, we have 2 diets, d1, d2.  Thus, for example, records 1-
8 are each made up of b1 + d1 .  Similarly, records 9 - 16 are made up of b1 + d2 and 
records 25 - 32 of b2 + d2.   It is usual, just as for a regression equation, to use the letter y 
to refer to the variable to be analysed and to use a combination of subscripts to refer to 
the particular data value.  Thus, 
  
  y111    =  b1 + d1  for record 1 
  
  y124    =  b1 + d2  for record 12 
  
  y225    =  b2 + d2  for record 29  
 
 
Note that the first subscript refers to breed, the second to diet and third to lamb number 
(1-8) within each breed-diet category. 
Normally, b and d are defined as deviations from the overall mean, which is usually 
written µ.  Also, since there are fewer parameter levels (2 + 2) than there are lambs (32), 
each observation will deviate from the sum of the 2 parameter levels by a residual  
amount usually described by the letter e or ε, known as the error or residual term.  
 
Thus, the above equations are written in full as  
 
  y111     =   µ + b1 + d1 + e111 
    
  y124     =   µ + b1 + d2 + e124 
 
  y225     =   µ + b2 + d2 + e225 
 
Thus, each observation is made up of an overall mean, a term for breed, a term for diet 
and a residual.  These equations can be written more generally as 
 
 yijk     =  µ  +  bi  +  dj  +  eijk     (i = 1, 2; j = 1,2; k = 1....8) 
 
This, then is an algebraic formulation of the expression 
 
  Data (y) = pattern (µ + b + d) + residual (e) 
 
As has already been mentioned, the purpose of analysis of variance is to separate and 
quantify the different sources of variation.  In this case it separates variations due to 
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breed and variations due to diet from each other, and compares the magnitudes of these 
different sources of variation with the variation which is left over among residual terms.  
In using analysis of variance two main assumptions are used: firstly, that the eijks have 
the same distribution for each parameter (i.e. are not more variable for one than another) 
and, secondly, they are distributed normally.  Thus, it is not strictly valid, unless the data 
set is very large, to use analysis of variance for discrete variables that are associated with 
binomial or Poisson distributions.  Logistic or log-linear models are ones that can be 
used for these types of distributions.  Refereed journals insist on the use of such methods 
for discrete variables.  These models will not be covered in this course. 
 
In developing further the idea of analysis of variance it will be simplest to start with a 
model based on just the 4 groups of lambs categorised by breed and diet in the data set, 
but ignoring the breed-diet structure.  The model we shall first use, with g signifying 
group, is 
   yij    =   µ + gi + eij    (i = 1...4; j = 1....8) 
 
It is important to emphasise the need for writing down the statistical model to be fitted to 
a set of data before embarking on a statistical analysis.  It is a great help in representing 
the pattern in our data and deciding the form the analysis of variance should take. 
 
 
One way analysis of variance 
 
The model  
  yij   =  µ  +  gi + eij 
 
is an example of a one way analysis of variance.  Such an experiment is often referred 
to as a completely randomised design.  The analysis of variance will take the following 
form: 
 
 Source of variation  df SS MS VR 
 ____________________________________________ 
  
 Among groups               3 
 Residual  28 
 ____________________________________________ 
 Total   31 
 
The degrees of freedom (df) for the variation among groups is calculated as one fewer 
than the number of groups (i.e. 4-1).  The total degrees of freedom = 32 (number of 
lambs) -1.  The residual degrees of freedom is calculated by subtraction of the among 
groups df from the total df. 
 
The following calculations calculate the sums of squares (SS) and mean squares (MS).   
 
Total.  This is the same calculation as that used for the variance, i.e. the sum of squares 
of individual observations minus the square of the total divided by the number of 
observations.  This is precisely the same as we did for regression analysis.  
Mathematically we can write this as 
 
   Σyij

2    -   (Σyij)2/32 (i = 1, …, 4 ; j = 1, …, 8) 
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We now have two subscripts because we are summing both within and across groups. 
The latter term (Σyij

2)/32 is often referred to as the correction factor. 
 
Thus, if we apply this formula to the weight gains of the 32 lambs, we obtain 
  
   total SS = 186.48 - 69.42/32 
            
      = 186.48 - 150.5112 = 35.9687 
 
Groups  The formula for the among group sums of squares uses the totals for each group 
(which we can write Gi  =  y11  +  y12 + .... +  y18), squares them and then divides by the 
number of lambs in the group.  It then substracts the correction factor given above to 
give: 
  
 (G1

2 / 8 + G2
2 / 8 + G3

2 / 8 + G4
2 / 8)  -  (Σyij)2 / 32 (i = 1, …, 4) 

 
The among group SS for weight gain is therefore  
 
 (10.62 + 19.12 + 11.92 + 27.82)/8 - 69.42/32 
  
 = 173.9525 - 150.5112 = 23.4413 
 
The among group mean square equals the among group sum of squares divided by the 
among group degrees of freedom. 
 
Thus, among group MS  = 23.4413/3 
    
      = 7.8138 
 
Residual  We calculate the residual sum of squares by subtracting the among group sum 
of squares from the total sum of squares. 
 
Thus, residual SS = 35.9687 - 23.4413 = 12.5274 
 
Residual MS     = residual SS/residual df 
   
      = 12.5274/28 = 0.4474 
 
Putting the results of these calculations into the analysis of variance table we get 
 
Source of variation  df     SS     MS  VR  
____________________________________________________________ 
 
Among groups               3   23.4413  7.8138  17.5 
Residual  28   12.5274  0.4474 
____________________________________________________________ 
Total   31   35.9687  1.1603 
____________________________________________________________ 
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The residual MS estimates the average variance among individuals within groups and is 
thus an estimate of the average within group variance of weight gains.  The among group 
MS represents the additional variation brought about by the differences in mean weight 
gains among the 4 groups.  We can see that it is 17 times higher than the residual MS, 
which suggests that there is considerable variation in average weight gain among the 
four groups.  This is as we suspected in our exploratory analysis which we undertook 
earlier.  Indeed the residual variance has been reduced from 1.1603 to 0.4474 kg2 by 
accounting for this pattern in our data. 
 
Exercise 5.3  Complete using your calculator a one-way analysis of variance for 
growth rate from 0 to 69 days to compare differences between the 3 immunisation 
groups in Experiment B.  Comment on what it shows. 
 
 
Exercise 5.4  Run this one-way analysis of variance for both growth rate from 0-69 
days and mean PCV between 49 and 56 days using Genstat.  Click ‘options’ and 
remove ticks for F-probabilities and Standard Errors of ‘Differences ; click Standard 
Errors of ‘Means’ instead).  Study output.  Is there anything in the output that you do 
not understand? 
 
 
Factorial analysis of variance 
 
The groups of lambs in Experiment A have been chosen with a particular structure.  In 
other words the 4 groups are composed of combinations of 2 diets and 2 breeds, namely 
 
                 Supplementation 
       yes no 
     Breed 
    _________________________________ 
       1    1 2 
       2     3 4 
        
 
This design, sometimes described as a 2x2 factorial design, is a very useful way, as 
already discussed in the Introduction, of getting as much information from an 
experiment as possible.  Thus, we can look at the effects of dietary supplementation on 
weight gain of two breeds at the same time.  What's more, we can look at the way that 
dietary supplementation and breed may interact.  If there is no interaction then we 
conclude that any effect of dietary supplementation is the same for each breed.  If there 
is an interaction then the effect of supplementation is different for different breeds. 
 
We can rewrite our statistical model as follows: 
  
  yijk    =  µ + bi  +  dj  + (bd)ij  +  eijk (i = 1, 2 ;  j = 1,2, k = 1, …., 8) 
 
where (bd)ij is a notation used to signify the interaction of breed and diet.   
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If the analysis shows there to be no significant interaction than we could express the 
model as 
   yijk    =  µ + bi + dj  +  eijk 
 
In other words, the model simply adds to breed the same estimates for diet irrespective 
of breed.  Sometimes we refer to such effects as being additive. 
 
In order to estimate sums of squares for breed and diet we split the sums of squares we 
have already obtained for groups, namely     
   ΣGi

2/8   - (Σyijk)2/32 (i = 1,2 ; j = 1,2 ; k = 1,8) 
 
We now calculate a component for breed 
 
   ΣBi

2/16  -  (Σyijk)2/32 (i = 1, 2) 
 
where Bi  is the sum of the ys for breed i,  
 
and a component for diet 
 
   ΣDj

2/16  -  (Σyijk)2/32 j = 1,2) 
 
where Dj is the sum of the ys for diet j. 
 
The expression we had earlier for the among group SS was: 
 
 (10.62 + 19.12 + 11.92 + 27.82)/8  -  69.42/32 
 
The between breed SS becomes: 
 
 (29.72 + 39.72)/16 - 69.42/32 
 
The between diet SS becomes: 
 
 (22.52 + 46.92)/16  -  69.42/32 
 
This results in sums of squares of 23.4413, 3.1250 and 18.6050 for group, breed and 
supplementation, respectively.  The sum of squares for the interaction can be obtained by 
subtraction of the last two numbers from the first, namely 23.4413 - 3.1250 - 18.6050 = 
1.7113. 
We can then complete the analysis of variance table as follows: 
 
Source of variation    df    SS    MS  VR   
______________________________________________________________________ 
 
Breed  (B)       1    3.1250   3.1250 6.98  
Supplementation (S)      1   18.6050 18.6050 41.6   
Interaction(BxS)      1    1.7113   1.7113 3.82 
Residual     28  12.5274   0.4474    
______________________________________________________________________ 
Total      31         35.9687 
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This analysis now partitions the group variation described earlier into components 
associated with breed and supplementation.  We can see that the largest component of 
the total variation is associated with supplementation and that this is about six times that 
between breeds.  The interaction mean square is approximately half that between breeds.  
Our exploratory analysis indicated that supplementation might have had a greater impact 
on weight gain in Red Maasai than Dorpers.  This analysis seems to confirm this, but it 
also shows that any interaction effect is small.  Is it significant?  In the next chapter we 
discuss how we can infer whether or not different terms included in our model are 
statistically significant or not. 
 
Exercise 5.5   
Complete using your calculator the following analysis of variance table for PCV in 
Experiment A. 
Source of variation   df       SS  MS  VR 
_________________________________________________________ 
Breed      1 
Diet      1 
BxD      1 
Residual              28  560.3750  
_________________________________________________________ 
Total    31  888.4688 
_________________________________________________________ 
 
 
Exercise 5.6  Repeat the above analysis of variance for PCV in Genstat. (Click ‘options’ 
and change values as in Exercise 5.4).  Compare the output with your calculated results. 
 
 
We can use the residual MS to calculate standard errors for the different means.  The 
residual MS is simply the average residual variance.  We saw in the last chapter that the 
standard error of a mean is the square root of the variance divided by the number of 
observations used to calculate the mean. 
 
Mean values for weight gain (kg) are as follows: 
 
 Supplementation  
Breed No Yes Mean 
    
Dorper 1.32 2.39 1.86 
Red Maasai 1.49 3.48 2.48 
Mean 1.41 2.93 2.17 
 
 
From the analysis of variance the residual variance = 0.4474 kg2.  Thus the standard 
error (SE) of any of the 4 means in the body of the table is √(0.4474/8) = 0.236.  
Similarly, SEs for overall means for breed or supplementation (yes or no) are  
√(0.4474/16) = 0.167.  If we multiply these SEs by 2 we can use them to determine 
approximate 95% confidence interval within which the true means lie.  Comparisons of 
these ranges will illustrate the degree of separation between the various means. 
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Exercise 5.7  Calculate 95% confidence intervals for the 4 means in the body of the table 
of means for weight gain in Experiment A (Dorper/Red Maasai experiment). 
 
 
Blocking 
 
If we recall the designs of Experiments A and B we might remember that in both cases 
some form of blocking was carried out.  In experiment A lambs within breed were put 
into 4 blocks ranked on the basis of body weight before randomly assigning them to 
treatment.  Cattle in Experiment B were separated into 2 age groups before assigning 
them to treatments.  So far we have not considered blocks in the analysis of variance, 
and we must. 
 
Recall that, without blocks, the model that we used for Experiment A was 
 
 yijk = µ + bi + dj + (bd)ij + eijk 
 
 where i = 1,2 ; j = 1,2 and k = 1,2 ….., 8. 
 
We now have to incorporate block (for which we shall use the letter r standing for 
replicate) in the model.  This a little tricky for the blocking was done within breed.  For 
each breed there are 4 blocks.  We say that blocks are nested within breeds.  To do this 
we use a double suffix i and m where m = 1,2,3,4.  Thus, rim describes block m within 
breed i.  The complete formula is now. 
 
 yijkm = µ + bi + rim + dj + (bd)ij + eijkm 
 
In practice we would reorder the suffices and rewrite the model 
 
 yijkm = µ + bI + rij + dk + (bd)ik + eijkm 
 
where i = 1,2 ;  j = 1, …, 4 ;  k = 1,2 and m = 1,2 for the two lambs for each diet within 
each block 
 
Exercise 5.8 
Do an analysis of variance for weight gain for the above model in Genstat.  Comment on 
the effect of blocking.  Would you block again on body weight in a follow-up 
experiment?  (Normally one would use the Block structure in Genstat to put in a term 
involving blocks.  In this example however, it causes a complication in the output.  To 
keep the output simple include the term for block within breed as BREED.BLOCK in the 
Treatment structure.) 
 
Exercise 5.9 
Write the statistical model for Experiment B including parameters for both immunisation 
and block.  Do an analysis of variance for weight gain in Genstat..  
 
Analysis of covariance 
Analysis of covariance is a simple extension of analysis of variance, combined with 
analysis of regression.  Independent variables, not incorporated in the design of the 
experiment, are included as covariates.  Thus, in the study of the effect of  
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supplementation on the weight gains of the two breeds of sheep, weight at 3 months was 
taken into account in the definition of blocks.  Sex, however, was not.  We can, however, 
include sex in the model as a covariate (1,2).  Covariates may also be continuous 
variables.  The full model appears as follows: 
 
  yijkm = µ + bi + dj + rk + (bd)ij  + βxijkm + eijkm 
 
where β is the regression coefficient of weight gain (yijkm) on sex (xijkm). 
 
 
The analysis of covariance for weight gain appears as follows: 
 
 
Source of variation  df    SS    MS    VR 
________________________________________________________________ 
 
Breeds (B)    1   2.9919              2.9919     6.62    
Blocks within breed   6   2.9192               0.4865    1.08   
Supplementation (S)   1 18.3697             18.3697  40.66    
Breed x Supplementation  1   1.7629               1.7629    3.90     
Sex                 1   0.7870   0.7870          1.74  
Residual   21   9.4868               0.4518 
________________________________________________________________ 
Total    31 35.9687   
 
 
The analysis adjusts, or corrects, parameter level means for the differences in numbers of 
males and females making up each mean.  The regression on sex, whilst only having a 
very small effect (VR = 1.74) has slightly reduced the residual mean square.  
Interestingly, when adjusted for sex, the F value for blocks is now also greater than 1.  
Note that the total sum of squares is no longer the sum of the individual squares in the 
analysis of variance table.  This is because each sum of squares is now corrected for 
differences between sexes. 
 
When there is a choice to use a factor as a covariate or to define it as a blocking factor in 
a designed experiment, the latter is usually to be preferred, provided adequate numbers 
of degrees of freedom are retained for the residual term.  Had there have been equal 
numbers of females and males for each breed in this example, then it would have been 
possible to first block lambs on the basis of their sex within breed and then on the basis 
of body weight for each sex. 
 
 
Exercise 5.10  Run the model for analysis of covariance on sex in Genstat and verify that 
the output matches that given in the notes.  Compare mean values for breed and diet 
with those given when carrying out an analysis of variance without sex and see how they 
have been adjusted for sex. 
 
So what does β, the regression coefficient for sex in the output, mean?  Normally we 
would think of this as a regression coefficient of a dependent variable y on an 
independent variable x which is continuous.  In this case the independent variable x is  
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sex, which is a discrete variable taking on the value 1 for male and 2 for female.  We 
can still think of β as a regression coefficient representing the slope of the line joining 
the mean values of weight gain for the two sexes.  The slope represents the difference 
in weight gain along the y-axis divided by the difference in sex (2 minus 1) along the 
x-axis.   As  2 - 1 = 1, β is simply the difference in weight gain between the two sexes. 
 
The computer output produced by Genstat gives the regression coefficient (slope) for 
β to be 0.42 and the s.e. 0.32 kg.  Thus, females grow faster by 0.42 ± 0.32 kg than 
males.  This is an unlikely result and probably occurred by chance.  Referring to Fig. 
4.7 in chapter 4 we note that the box plot indicates a trend in the opposite direction.  
Note, however, the box plot shows the data grouped by one factor and ignores other 
factors such as breed and supplementation.  Calculation of the sex effect in the 
analysis of covariance on the other hand corrects for all other factors in the model. 
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Chapter 6    Writing up and presenting results 
 
The statistical analysis has no value when the results cannot be conveyed to the 
relevant audience.  This can be difficult.  The researcher knows just how complex and 
perhaps confusing the analysis has been, has discovered many nuances to the data, yet 
has to convey the results in as simple a way as possible that demonstrate how the 
objectives of the study have been met. 
 
Text becomes difficult to read if too many numbers are included.  Thus, a set of 
numerical results should usually be presented as a table or graph rather than included 
in the text.  Well presented tables and graphs can concisely summarise information 
which would be difficult to describe in words alone.  Poorly presented tables and 
graphs, however, can be confusing or irrelevant.  In general, tables are better than 
graphs for giving detailed numeric information, whereas graphs are better for 
indicating trends and making broad comparisons. 
 
Tables and graphs should, ideally, be self-explanatory.  In other words, the reader 
should be able to understand them without undue reference to the text.  The title 
should be informative and rows and columns of tables and axes of graphs should be 
clearly labelled.  Graphs and tables should be as simple as possible while having 
sufficient detail to be useful and informative. 
 
Statistical information, such as standard errors and significance levels (determination 
of significance levels will be described in the next chapter) is usually required in 
scientific papers.  This may not be necessary for articles for a more general readership 
or for slides or transparencies for use in a lecture.  Such statistical information should 
always be presented in such a way that it will not obscure the main message of the 
table or graph. 
 
One often finds tables in scientific papers clustered with little superscripts a, b, ab, c, 
etc, or symbols *, *** to signify significant differences.  Authors need to ask 
themselves whether these are really necessary, as they tend to obscure the main 
ingredients of the table.  In some cases they will feel they are necessary and help with 
the understanding of the table.  Authors should think twice, however, before doing 
this.  Normally tables are much better if they are simple and present the data at their 
face value.  Often only means and standard errors are required.  Significance levels 
can be quoted in the text as a guide to the reader, but the reader should be able to draw 
his own conclusion on how ‘significant’ he/she feels the results are. 
 
Exercise 6.1.  Write, in no more than three sentences, a report of the results shown in the 
analyses of weight gain and PCV done so far for Example A (Dorper/Red Maasai).  Do 
this without using any statistical significance tests. 
 
Exercise 6.2.  Do likewise for Experiment B (immunisation experiment). 
 
The number of digits and decimal places presented in a table should be the minimum 
number that is compatible with the purpose of the table.  Thus, three decimal places 
for weight gain in the lamb experiment, e.g. 1.325, may be too many, since the third  
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decimal place may have little practical significance; conversely, one decimal place 
e.g. 1.3, 2.4, could lose too much information.  As a general rule, standard errors 
should be written with the same or one more decimal place than the mean. 
 
Graphical presentation often helps to highlight certain aspects of the results.  
Individual standard errors for each diet can be presented as a vertical line above a bar.  
If it is necessary to include standard errors of difference between means, these can be 
included as a footnote or in the text.  A graph should never duplicate the results 
displayed in a table in the same report. 
 
Exercise 6.3.  Prepare a table illustrating the mean results for weight gain and PCV 
in Example A assuming that it has been decided to ignore the interaction.  Include 
measures of variation in this table. 
 
Exercise 6.4.  Prepare a similar table for Example B.  Which graphs would you 
include in a paper to supplement this table? 
 
The course so far has dealt only with estimation and not with hypothesis testing (see 
next chapter).  As statistics is only a tool to help the researcher put over his results in 
a way that gives some reassurance to the reader, we ought to be able to write a 
convincing report without resorting to over-use of statistical significance levels.  The 
term ‘statistically significant’ is indeed often over-used in statistical reports of 
experiments.  Firstly, ‘significant’ has a common usage quite different from the 
statistical one.  Some readers may get confused.  Secondly there is no clear boundary 
between ‘significant’ and ‘not significant’ (those that are used, e.g. P < 0.05, P < 0.01, 
are artificial).  Thus, using phrases such as ‘clear evidence for ….’, ‘some evidence 
for ……’ and ‘little reason to believe that ……’ could reflect the real state of the 
knowledge more fairly.  Furthermore, to state whether a difference is statistically 
significant may not be sufficient.  The objective of a study may more likely need to 
determine whether the difference observed is large enough to be useful in some way. 
 
Avoid repeating lists of results that can be seen more clearly in a table.  Whole 
paragraphs that just reproduce in long-hand the data in a table are just a waste of 
space and effort.  Some results in each table or graph must be referred to in the text.  
A table, or part of a table, that is ignored in the text can usually be omitted.  Also 
avoid discussing the results in the Results section.  Discussion of results should be 
held back until the Discussions section.  Of course, any experimental results that you 
wish to discuss should be included in the Results section. 
 
When writing a report it will usually be necessary to include a description of the 
statistical methods that have been used.  This is mainly done so that a reader can see 
whether he/she feels that the methods are appropriate or not.  If the data are archived 
then it should be possible to repeat the analysis from the description given in the 
paper.  Sometimes in simple cases it is possible to give a clear description very briefly 
– e.g. the data were analysed by analysis of variance for a randomised block design.  
However, in more complex situations it is difficult to be brief.  The analysis may have 
taken various steps or the statistical model may be complicated.  Sometimes it may be 
easiest to express the statistical model algebraically.  A biometrician should be able to 
help the researcher in difficult situations such as this. 
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Exercise 6.5.  Write a statistical report describing the data analysis carried out in 
Experiment A.   
 
Exercise 6.6.  Write a similar report for Experiment B.  In this case the decisions to 
omit 3 animals and the calculations of the summary statistics for growth rate and 
PCV used in the final analysis will need to be emphasised. 
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Chapter 7  Ideas of simple statistical inference 
 
 
We have already drawn some ideas of statistical inference when we described 
confidence intervals.  From a knowledge of the variation of the observations within our 
sample we make inferences about how closely we could estimate the range within which 
the population mean is likely to lie.  We can, however, use statistical inference in other 
ways to assess the significance of the results from an experiment.  There are a number of 
statistical tests that allow us to do this.  Each of these tests are concerned with the 
examination of a null hypothesis that there is no difference in the means being compared 
and with determination of the probability level at which the null hypothesis can be 
rejected.  The null hypotheses relate to the objectives set out when the experiment was 
planned. 
 
 
t-test 
 
The simplest and best known test is the t-test.  It is normally used for determining the 
statistical difference between two means. 
 
The formula for the t-test is 
 
 t = (difference between 2 means)/(SE of difference between 2 means) 
 
The SE of the difference between 2 means (SED) is calculated as the square root of 
[the variance multiplied by (1/n1 + 1/n2)] where n1 and n2 are the numbers of 
observations respectively making up the 2 means to be compared.  When n1 = n2 = n the 
formula reduces to √[2 x variance x (1/n)] or √2 SE.  
 
To illustrate better the use of the t-test let us return to Example A in which we used the 4 
group means to form a 1-way analysis of variance. 
 
Thus, to examine the increase in weight gain brought about by supplementing the 
Dorper, we get 
 
   t = (2.39-1.32)/(√2x0.236)    where 0.236 is the variance determined from the   
                                                            residual MS in the analysis of variance 
 
    = 1.07/0.334  =  3.20 
 
We compare this value with t-values in the t-table using the number of degrees of 
freedom, namely 28, for the residual variance.  With 28 df we get t-values of 2.05, 2.76 
and 3.67 at 5%, 1% and 0.1% levels of significance, respectively.  The value of 3.20 is 
less than 3.67 but greater than 2.76, and so the difference in weight gain brought about 
by supplementation is significant (P<0.01).  This means that the probability of rejecting 
the null hypothesis that there is no effect of supplementation when the null hypothesis is 
true less than 1 in 100.  In other words with a probability greater than 99 in 100 we can 
deduce that there is a real difference between the means.  However, if we compare non-
supplemented Red Maasai with non-supplemented Dorper we get 
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 t = (1.49 - 1.32)/(√2 x 0.236) = 0.51  
 
which is not significant.  In other words we are unable to reject the null hypothesis that 
there is no difference between the unsupplemented means. 
 
 
 
Exercise 7.1. Use Genstat to select the 16 Dorper sheep (Breed 1) in Experiment A.  
Then carrying out a t-test on this data subset to examine the effect of supplementation.  
Compare the t-value with the value of 3.20 above.  Explain why they are different. 
 
Least significant difference 
 
It is sometimes more convenient to calculate the least significant difference (LSD) 
needed for the difference between 2 means to be significant.  This is calculated as  
 
 LSD = t x SED 
 
Thus, for the 4 means in the body of the table 
 
LSD  =  2.05 x 0.334 = 0.68 at the 5% level of significance 
        =  2.76 x 0.334 = 0.92 at the 1% level of significance 
        =  3.67 x 0.334 = 1.23 at the 0.1% level of significance 
 
We can then compare differences between the respective means with these values to 
determine their significance.  Thus, for example, 
 
 2.39 - 1.32 = 1.07  : significance level     P<0.01 
 3.48 - 1.89 = 1.59  :      "         "                P<0.001 
 1.49 – 1.32 = 0.51 : not significant 
 
Note that the t-value in the table decreases as the number of degrees of freedom for 
the residual term increases.  This is because the greater the number of degrees of 
freedom the more precisely is the variance known and the closer it is to the true 
population value.  This is important in relation to the design of experiments.  Very 
small experiments yield few degrees of freedom for the residual variance making it 
more difficult to detect statistical significance.  It is also important to emphasise here 
that the correct formula for a confidence interval is mean ± t x se, not the approximate 
formula mean ± 2 x se used earlier.  As can be seen from the t-tables, however, t 
approximates to 2 for large degrees of freedom. 
 
Exercise 7.2  Run again the analysis of variance for Experiment A weight gain in 
Genstat but this time request for SEs of differences, not for means.  Use the 
appropriate SED to calculate LSDs at 5, 1 and 0.1% levels for comparing the means 
in the body of the breed x diet table. 
 
 
 
 
 



 54

F-test 
 
This test is used for assessing the statistical significance of variance ratio (VR) values 
in analysis of variance.  Unlike the t-test, it has a pair of degrees of freedom, the first 
referring to those for the term in the numerator and the second to those for the 
residual.  For example, let us consider the one-way analysis of variance for group in 
the previous chapter.  We put  
 
F = VR = 7.8138 / 0.4474 = 17.5 
 
We use this value to compare with values in F-tables with 3 and 28 degrees of freedom.  
If we look at the column headed 3 df at the top of each of the F-tables at the end of these 
notes and then come down this column until we reach 28 df on the left hand side, we 
find the values 2.95, 4.57, and 7.19 for 5%, 1% and 0.1% levels of probability, 
respectively.  If our observed F-value exceeds any of these values then we say it is 
statistically significant.  The value of 17.5 exceeds the value of 7.19.  Thus, the analysis 
of variance shows that there is highly significant variation in liveweight gain among the 
4 groups of lambs at the 0.1% level of statistical significance.   This is normally 
described using the notation (P<0.001).  In other words, the probability of there being no 
differences among the 4 groups of lambs is less than 1 in 1000.  It should be noted here 
that we are non the wiser as to which groups differ from one another.  All that we know 
is that there are differences.  To ascertain where the differences lie we go on to apply the 
t-test between pairs of means. 
 
If we now consider the interaction between breed and supplementation in the factorial 
analysis of variance given in Chapter 5, and put F1,28 = 3.82 we find that the P-value is 
just above P = 0.05 ; indeed we can guess it to be 0.06.  Thus, the probability of an 
interaction occurring by chance = 6/100.  The question is - is the size of the 
interaction sufficiently important to report this P-value, or is the size of insufficient 
biological importance?  This is for the researcher to decide.  It is important in any data 
analysis to distinguish between statistical significance and practical importance. 
 
Exercise 7.3. Rerun the analysis of variance of weight gain in Experiment A using the 
statistical models fitted in Chapter 5.  This time do not click ‘options’. Look at the P-
values for the interaction, for block and for sex and decide whether to include any of 
these in the final model to use for the reporting of the results. 
 
In summary, statistical analysis provides a number of tools that allows the researcher 
to draw statistical inferences about the patterns he observes in his data.  In writing up 
results the researcher should remember that the role of statistics is to simply provide 
some of the numerical evidence to support the arguments being made.  Thus, in the 
respect it is just a tool.  The researcher is the best judge of the practical importance of 
his results – he therefore uses the results of statistical analysis to provide some basis 
for making his/her conclusions. 
 
It should also be noted that there are certain assumptions that are made in the use of 
analysis of variance and the F and t-tests.  For instance, it is assumed that observations in 
the data being analysed are independent and random, follow a normal distribution and all 
groupings of the data are drawn for populations with the same residual variance.  
However, F and t-tests are robust in the sense that they can handle slight deviations 
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from normality and slight variations in variation across the population without affecting 
the general inferences that can be drawn. 
 
In general if an F-test is not significant then one should not go on and compare different 
individual means by the t-test.  But this rule does depend on the initial null hypotheses 
established when the experiment was planned.  A common sense approach is needed.  
What is inappropriate is to carry out a ‘fishing’ exercise searching for statistical 
significance between different means without regard to the null hypotheses. 
 
 
One-tailed tests 
 
When a t-test is used it is usually applied as a 2-tailed test.  This means that we are 
considering significant deviations in both directions, i.e. treatment A could have a mean 
that is higher or lower than treatment B.  Our null hypothesis is treatment A = B and our 
alternative hypothesis is A ≠ B.  Sometimes we may set up an experiment, often with a 
control, in which a priori we have decided to ascertain whether the treatment is ‘better’ 
than the control.  In other words we are evaluating the alternative hypothesis treatment A 
> B.  This is known as a one-tailed test.  For example, we may wish to test whether a 
vaccine results in some degree of protection compared with unaffected controls, or we 
may wish to evaluate whether a new form of therapy is better than are existing one.  If 
we decide that a one-tailed t-test is appropriate then we look up the 10% rather than the 
5% value, or the 2% rather than the 1% value, in the statistical table.  Thus, we double 
the size of each tail so that we look at only one side of the distribution.  If we detect a 
significant difference in the opposite direction then we ignore it as it is inconsistent with 
our alternative hypothesis. 
 
 
Excercise 7.4  Run one-way analyses of variance in Genstat to compare mean PCVs and 
weight gains for animals in the 3 immunised groups in Experiment B.  Apply t-tests to 
compare difference between means.  Combine the means for the ARF1 and p32 
immunised groups and calculate the t-value for comparing with the negative control.  
Which of your comparisons are consistent with the null hypotheses defined when the 
experiment was designed?  Do you think that we should be using one-tailed or two-tailed 
t-tests in this example? 
 
 
Paired t-test 
 
A paired t-test is sometimes applied.  This is for situations where animals are blocked 
into pairs for assignment of two treatments, one to each pair, or where an observation is 
recorded on an individual before and after some treatment or intervention is applied.  
This is analogous to a randomised block analysis of variance with two treatments.  
Suppose for example 5 cows were infected with trypanosomes and then treated with a 
trypanocidal drug.  If we are interested in extent of recovery of PCV then we would 
measure PCV at two time points before and after treatment.  The experimental unit in 
this case is each individual sampling occasion within the cow and the statistical model 
can be written: 
 
yij = µ + ci + tj + eij 
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where  ci (i = 1-5) is the effect of cow and 
 tj (j = 1,2) is the effect of treatment (or sampling time before or after     
                            treatment). 
 
 
The analysis of variance table therefore looks like 
 
 Source  df 
 
 Cow  4 
 Treatment 1 
 Residual 4 
 
 Total  9 
 
Alternatively, we can calculate the difference in PCV measured on the two occasions to 
obtain five new values which represent the change in PCV for each cow.  We can use 
these values to calculate the mean difference and the standard deviation of these 
differences, and apply a t-test to compare the mean difference against zero.  Thus if x diff 
represents the mean difference then 
 

 
One can demonstrate that the above variance is the same as the residual MS in the 
analysis of variance table.  Indeed if one compares F1, 4 and t4 values (say at the 95% 
level) in the statistical tables it can be seen that F1, 4 = t42.  Thus, the paired t-test is an 
alternative to the analysis of variance for a randomised block experiment when there are 
only 2 treatment levels.  Likewise, a non-paired t-test is an alternative method for 
analysing a completely randomised design with two treatments. 
 
Exercise 7.5  Using the data in Exercise 7.1 carry out a one-way analysis of variance to 
compare supplementation versus non-supplementation and show that the same results 
are obtained as for the t-test applied in Exercise 7.1. 
 
 
Heterogeneity of variance 
 
What do we do when variances vary across the populations we are comparing?  In 
comparing the Red Maasai/Dorper experiment the variances for weight gains among 
individuals can be calculated separately for each breed-diet group and shown to be 
0.3793, 0.9041, 0.2955, 0.2107 kg2, respectively.  The residual variance used in the 
analysis of variance is the average of these.  However, the individual variance, for 
groups 1, 3 and 4 are smaller than for group 2.  The analysis of variance we have 
undertaken assumes that each variance calculated for each group estimates the same 
‘population’ variance.  This may not be true.  Even if it is not true, do we have to worry 
about it?  Probably not.  It is likely that the weight gains of lambs in group 2 were by 
chance more variable than in the other groups.  As already mentioned the analysis of 
variance technique is robust.  In other words it handles data for which assumptions, such  
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as homogeneity of variance of symmetric, normal distributions, do not strictly apply.  
But what alternative methods are at our disposal?  Faecal egg count (FEC), for instance, 
has a very skewed, non-normal distribution and an analysis of variance undertaken on 
these data may not be justified. 
Transformations 
 
Firstly we could transform FEC to a different scale by using a calculation such as log (y), 
log (k + y) or √y.  Each of these calculations reduces the skewness of the data and makes 
the residual variance less dependent on the mean.  The logarithm transformation is 
stronger than the square root one.  The log (k + y) transformation, where k is a constant 
>0, is used instead of log (y) when individual values of y occur which equal 0.  The 
disadvantage of this method is that, although it may produce a more valid statistical 
analysis, it is often not so easy to present the results.  This is because the means and 
standard errors calculated during the statistical analysis are now on a different scale. 
 
Exercise 7.6  Run an analysis of variance for FEC in Genstat, both on the original 
values and after transforming the data to loge (50 + FEC).  Compare the results.  What 
difference, if any, is there in the interpretation of the significance of terms in the analysis 
of variance? 
 
Sometimes a transformation is not appropriate; an alternative method might be to split 
the data into separate parts and to do a separate analysis of variance on each part.  
 
 It is conventional to analyse FEC on the log scale.  An arcsin (sin-1 √y) or square root 
transformation is more appropriate for disease prevalence data, the square root in 
particular when the prevalence is low.  However, there are also alternative methods 
using what is known as logistic regression or log linear models which are more suitable 
for such data.  These methods are not described here, being somewhat too advanced for 
this course. 
 
Results can be expressed on the original scale by calculating the geometric mean (antilog 
of the transformed mean) and the antilog of the 95% confidence limits for the 
transformed mean.  Take, for example, the Dorper lambs (breed 1) supplemented with 
cottonseed cake and bran meal.  The mean and standard error for FEC calculated on the 
log scale (loge y) are 7.26 and 0.36, respectively.  The 95% confidence range for this 
mean is 7.26 ± t x 0.36 where t, with 7 degrees of freedom, = 2.36.  Thus, 95% 
confidence interval for mean = (6.41, 8.11).  If we transform these values back to the 
original scale using the antilog (or ex) transformation, then mean = 1422, range = (608 to 
3327).  Thus, we can say that the geometric mean is 1422 eggs per gram (epg) and that 
95% confidence interval within which the true ‘population’ mean lies is between 608 
and 3327 epg. 
 
Three important points need to be highlighted: 
 
• It is not permitted to calculate an antilog for the standard error to produce a standard 

error on the original scale. 
 
• The upper and the lower confidence interval values are not equidistant from the 

mean. 
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• If loge (50 + y) is used for the transformation for instance, then 50 must be taken off 
the antilogs after transformation back to the original scale in order to calculate the 
correct geometric mean and range. 

 
 
Another variable that is often transformed to logarithms is antibody titre.  Serum is 
usually diluted in a geometric series, i.e. with a constant ratio between successive 
dilutions, e.g. 1/2, 1/4, 1/8, 1/16 etc.   Thus, frequency distributions of titres tend to be 
lognormal and so the logarithm transformation is usually necessary. 
 
 
Analysis of discrete data. 
 
Some of the more general methods for the analysis of discrete data (e.g. logistic 
regression) are beyond the scope of this course.  Discrete data are data that are not 
continuous.  For example, variables which take on the values 0 or 1 are often referred to 
as binary variables.  Mortality is such an example.  Others are disease incidence, 
conception (yes or no) etc.  Statistical models can be prepared using discrete variables as 
the response variable in just the same way as continuous variables.  When the statistical 
model is very simple the data can often be analysed using a χ2 test. 
 
 
Chi-square (χ2) test 
 
In simple experiments data can often be grouped into a two-way table and a χ2-test 
performed.  Thus, for example, if the lambs used in this experiment were drawn from a 
group of 55 Dorper and 42 Red Maasai lambs and 14 and 4, respectively, died before 
weaning, then we can compare difference in mortality by forming a table, often known 
as a contingency table, as follows. 
 
Breed Alive at weaning  
    
 No Yes Total 
    
Dorper 14 41 55 
Red Maasai   4 38 42 
    
Total 18 79 97 
 
 
The above values are the ones observed.  The next step is to calculate the values that 
would have occurred had the mortality rates in the two breeds been the same.  These are 
known as expected values.  Expected values for each of the 4 cells in the body of table 
are obtained by dividing the corresponding totals in the right hand column by the grand 
total to give the proportion of animals of that breed) multiplied by the corresponding 
total in the bottom row.  Thus, expected values are, respectively: 
 
 55/97 x 18 55/97 x 79 
 42/97 x 18 42/97 x 79 
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= 10.2  44.8 
7.8 34.2 

 
We are interested in knowing whether the observed values differ significantly from the 
above expected values calculated assuming no association between breed and mortality.  
We do this by use of what is known as a χ2 test. 
 
The formula for the χ2 test is ∑(oi – ei)2/ei 
where oi = observed value and ei = expected value (i = 1, 2, 3, 4) 
Thus χ2 = (14 – 10.2)2/10.2 + (41 – 44.8)2/44.8 
  + (4 – 7.8)2/7.8 + (38 – 34.2)2/34.2 
  = 1.416 + 0.322 + 1.851 + 0.422 
  = 4.01 
 
The number of degrees of freedom = (2-1) x (2-1) = 1.  The reader will have noticed that 
only one cell in the body of the table needs to be independently calculated. Values for 
the other cells can be derived by substracting the first cell from the adjacent totals.  Thus, 
the number of degrees of freedom is 1. 
 
 
The 5% and 1% values for χ2 with 1 degree of freedom are 3.84 and 6.63, respectively.  
Thus, we can say that the mortality rate before weaning in the Dorpers of 14/55 (25%) 
was significantly higher than that of 4/42 (10%) in the Red Maasai (P < 0.05). 
 
The χ2 test is an approximate test and can only be satisfactorily applied when the 
numbers in the table are reasonably large.  When any value of ei is less than 5, the above 
formula should be replaced by: 
 
 ∑(| oi – ei | - 0.5)2/ei 
 
where | oi – ei | is the positive value of the difference between oi and ei.  This is because 
the χ2 test in its unadjusted form over-estimates the statistical significance of any 
association.  In other words the test rejects more often than it should the null hypothesis 
that the values in the table are independent and occur by chance. Note that this method 
of adjustment is only valid for 2 x 2 tables and not for tables with more than 2 rows or 
columns. 
 
Exercise 7.7 
Calculate the numbers of animals in Example B that had to be treated and removed 
from the experiment because of low PCV.  Create a 3 x 2 spread sheet in Genstat 
showing the numbers of animals surviving and not surviving for each treatment 
group.  Carry out a χ2 test on this table.  How many degrees of freedom are there? 
Combine the two immunised groups and repeat the χ2 test on the 2 x 2 table.  
Comment on the outputs. 
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Fisher’s exact test 
 
You may have noted that the Fisher’s exact test is an alternative option to the chi-
square test for the analysis of contingency table data in Genstat.  This is especially 
useful for experiments involving small numbers of animals and especially when the 
experiment is planned to determine whether a treatment is better than the control in 
the response it produces.  It has already been stated that the χ2 test is only an 
approximation for small sample sizes.  In experiments involving cattle the researcher 
can often only afford few animals.  This applies particularly to vaccine experiments 
where levels of protection are being evaluated.  In such cases it is reasonable to apply 
a one-tailed test, in other words the alternative hypothesis is that the level of 
protection offered by the vaccine is greater than zero.  The Fisher’s exact test provides 
this possibility.  This test calculates for all possible 2-way tables the probability of 
each table occurring by chance, and then adds the probability of the table observed to 
the probabilities of those tables occurring that are more extreme, both in one direction 
only (1-tailed test) or in both directions (2-tailed test).  With a small sample size we 
would normally have designed an experiment with a 1-tailed test in mind.  The 
Fisher’s exact test is superior to the χ2  test for small sample sizes.  Furthermore, it is 
not possible to think of the χ2 test as providing alternative one-tailed and two-tailed 
tests.  It behaves in a similar way to a 2-tailed Fisher’s exact test. 
 
 
Exercise 7.8  Apply the Fisher’s exact test to the contingency table representing 
numbers of Dorpers and Red Maasai alive or not at weaning and compare the result 
with that of the χ2 test (Ignore the mid-point P value given by Genstat for the Fisher’s 
exact test.) 
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Chapter 8  Sample size 
 
 
Having now acquired an understanding of the development of statistical models for 
the purpose of carrying out analysis of variance it is useful to briefly return to the 
question of experimental design.  Once the plan for an experiment has been made and 
the number of animals decided it is useful to sketch out the skeleton of the shape that 
the analysis of variance will take by listing the numbers of degrees of freedom.  As 
described earlier it is important to ensure that there are reasonable numbers of degrees 
of freedom for the residual term, not only to ensure that a reasonable estimate of the 
residual variance is obtained, but also to ensure that t and F significant values are not 
over-inflated. Also it is important to ensure that there is sufficient replication to 
provide standard errors that are small enough to detect as significant the required 
differences in means.  The following exercise illustrates these points. 
 
Exercise 8.1 You plan to carry out a farm trial to assess the effect of anthelmintic 
treatment on growth rate of lambs to weaning.  You have 10 flocks, each on a 
different farm, at your disposal.  It will be possible to divide 4 of the flocks so that 
each half grazes in a different paddock.  The flocks in the other farms cannot be 
subdivided in this way.  It has been decided that it would not be desirable to mix 
treated and untreated sheep in the same grazing pasture.  Design two experiments, 
one based on just the 4 farms with 2 paddocks, the other based on all 10 farms, using 
one paddock from each farm, to carry out the objective.  Write down the statistical 
models in each case and sketch the form of the analysis of variance table.  Which are 
the experimental units in each case which design do you prefer? 
 
 
Determination of sample size 
 
Before conducting an experiment it is important to decide on how many animals, flocks 
etc. one may need in order to estimate treatment means to a desired precision.  In other 
words, we need to know how many replicates or blocks we need in order to have a 
reasonable chance of detecting a real difference at a given level of statistical 
significance. 
 
We have already seen that the standard error of the difference between 2 means, each of 
n observations, is given by the formula: 
 
    =×= n/iancevar2SED  2SE 
 
One might have a preconceived idea of the approximate size of the standard deviation to 
be expected.  Thus, if the experiment described in our example were to be repeated using 
two different breeds, we could assume that we might expect a residual variance of about 
0.5 (It was 0.4474 in the experiment).  Suppose we decided that we needed to determine 
a difference of 1.0 kg in weight gain between two groups to be statistically significant 
(P<0.05).  We can then apply the formula. 
 
    LSD = t x SED 
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             n/iancevar2t ×=  
 
Squaring both sides and manipulating terms we get 
 
    n  =  2 t2 x variance / LSD2 
 
Substituting t = 2 (approximate value for P = 0.05 with large number of degrees of 
freedom) 
we get 
    n = (2 x 4 x 0.5)/1.02 
 
       = 4.0 
 
Therefore we can expect to require 4 animals per group to show a difference in weight 
gain of 1.0 kg as significant between diets (P<0.05). 
 
With a completely randomised design with 4 groups (breed x supplementation) we 
would have 12 degrees of freedom (i.e. 4 x 3 degrees of freedom per group) for the 
residual mean square. t12 = 2.18 (P = 0.05).  Replacing t2 with 2.182 in the above formula 
we can revise our sample size estimate to  
 
   n = (2 x 4.75 x 0.5)/1.02 = 4.75 
 
  Therefore we would, in fact, need 5 animals per diet. 
 
Exercise 8.2  Run an analysis of variance for minimum mean PCV in Example B.  It has 
been decided to repeat the experiment to compare again the effect of p32 immunisation 
against the control.  Decide what minimum difference in PCV you would like to detect as 
being significant (P < 0.05).  By using the Genstat output to provide an estimate of s2 
calculate how many animals will be needed within each group. 
 
 
Combining experiments 
 
When experiments are replicated it is often possible to analyse them together within the 
one analysis of variance framework.  This is a useful and practical way of increasing 
sample size. 
 
Suppose, for example, that the immunisation experiment illustrated in Example A is 
repeated with 8 animals inoculated with the p32 form of the vaccine and 8 negative 
controls.  The hypothesis now is that p32 itself offers protection.  We can now combine 
the two experiments as follows: 
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Number of animals 

   
Experiment p32 Control 
   
1   7   5 
2   8   8 
   
Total 15 13 
 
Thus, total sample sizes are 15 and 13, respectively.  The analysis of variance structure 
for analysing both experiments together will be as follows: 
 
Source of variation  df 
 
Experiment    1 
Immunisation    1 
E x I     1 
Residual  24 
 
Total   27 
 
Exercise 8.3  Calculate how many sheep per group you would need to determine a 
difference of 0.5 kg as significant (P<0.05) in the breed x supplementation experiment 
(Experiment A) if your estimated standard deviation was 0.8 kg.  Suppose that the 
number you obtain is far more than the number of sheep available to the researcher.  
Discuss what advice you might give to the researcher.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Example A
 
 
Record ID breed sex supp block wt_3mo wt_6mo pcv fec wt_gain

1 349 1 2 1 1 8.0 8.9 10 6500 0.9
2 326 1 2 1 1 9.0 10.1 11 2650 1.1
3 393 1 1 1 2 12.0 12.6 22 750 0.6
4 71 1 1 1 2 12.3 14.6 15 5200 2.3
5 271 1 1 1 3 13.0 13.7 19 4800 0.7
6 382 1 2 1 3 15.5 16.8 24 2450 1.3
7 85 1 2 1 4 16.3 18.2 27 200 1.9
8 176 1 2 1 4 15.9 17.7 21 3000 1.8
9 286 1 2 2 1 11.0 13.6 21 1600 2.6

10 183 1 1 2 1 9.9 11.7 21 450 1.8
11 21 1 2 2 2 11.6 13.1 25 2900 1.5
12 122 1 1 2 2 12.5 14.8 25 300 2.3
13 374 1 1 2 3 14.6 17.9 19 2250 3.3
14 32 1 2 2 3 14.2 16.9 22 2800 2.7
15 282 1 2 2 4 16.3 20.2 20 750 3.9
16 94 1 1 2 4 16.7 17.7 13 5600 1.0
17 127 2 2 1 1 7.5 8.1 26 1350 0.6
18 216 2 2 1 1 8.2 9.3 19 1150 1.1
19 133 2 1 1 2 10.1 11.7 30 200 1.6
20 249 2 1 1 2 8.8 10.4 28 0 1.6
21 123 2 2 1 3 11.6 12.6 23 600 1.0
22 222 2 2 1 3 11.3 13.5 24 1500 2.2
23 290 2 2 1 4 12.3 14.3 22 1950 2.0
24 148 2 1 1 4 13.1 14.9 26 500 1.8
25 142 2 2 2 1 8.2 11.5 25 850 3.3
26 154 2 2 2 1 8.5 12.2 35 700 3.7
27 166 2 1 2 2 9.7 12.8 29 400 3.1
28 322 2 1 2 2 8.6 12.0 26 800 3.4
29 156 2 1 2 3 10.2 13.0 28 1550 2.8
30 161 2 2 2 3 11.2 14.6 22 550 3.4
31 321 2 1 2 4 12.1 15.9 25 1250 3.8
32 324 2 1 2 4 13.8 18.1 24 1100 4.3



 Example B-WT
 
ANIM DOB BLOCK GROUP SEX INITPCV D7 D9 D10

4 6/4/1999 1 A F 39.20 38.30 35.60 31.60
6 7/18/1999 2 A M 33.60 34.00 31.60 31.30
8 7/1/1999 2 A M 32.50 34.70 30.10 30.10

11 7/4/1999 2 A F 30.70 33.40 31.60 29.80
16 6/12/1999 1 A F 31.15 31.30 31.60 28.60
19 7/8/1999 2 A M 36.50 35.30 35.30 31.00
20 6/24/1999 1 A F 29.80 28.00 27.10 27.10

1 7/5/1999 2 B F 31.75 31.60 31.30 30.40
5 6/1/1999 1 B F 36.80 37.40 30.40 35.30
9 7/5/1999 2 B M 34.85 33.10 33.40 29.80

12 7/15/1999 2 B F 29.95 32.50 30.40 30.40
14 6/2/1999 1 B F 36.65 37.40 35.60 33.10
17 7/4/1999 2 B F 36.20 35.60 34.70 34.70
18 6/20/1999 1 B M 33.70 34.00 31.00 28.90

2 6/28/1999 2 C M 30.55 32.50 31.60 30.40
3 6/6/1999 1 C F 28.85 31.60 32.50 31.30
7 7/28/1999 2 C F 31.90 31.30 32.20 30.70

10 6/10/1999 1 C M 25.25 27.70 25.20 24.60
13 6/9/1999 1 C M 30.40 31.60 31.00 30.40
15 7/2/1999 2 C F 35.60 34.00 33.10 30.10
21 7/1/1999 2 C M 33.25 34.40 30.70 30.40



D11 D12 D13 D14 D15 D18 D19 D20
34.40 33.40 36.50 35.30 34.40 33.70 31.60 32.20
31.00 30.40 29.80 29.80 28.00 26.80 25.80 26.80
28.60 29.50 27.70 29.20 25.80 25.20 26.10 26.10
28.30 25.80 27.70 27.10 26.10 23.70 23.40 24.00
28.00 27.10 28.00 27.40 24.60 22.20 21.90 21.60
29.80 31.90 28.90 28.90 29.20 28.90 26.80 26.80
26.10 24.00 24.60 21.60 19.80 18.80 18.80 17.60
31.00 30.70 28.90 28.60 25.20 25.50 25.20 25.20
35.30 35.30 30.10 33.10 30.10 27.10 27.10 24.60
30.10 32.20 30.10 31.30 31.00 28.00 26.80 26.40
28.90 27.70 28.60 28.90 27.10 27.70 25.50 23.40
34.70 35.30 34.00 31.90 31.90 29.50 29.50 28.60
33.70 33.40 31.30 31.90 31.30 29.50 28.30 26.40
27.40 26.40 27.40 27.70 28.30 26.40 26.80 24.00
30.40 28.90 27.40 24.90 26.10 24.60 24.30 24.30
31.30 31.30 30.10 28.90 29.20 28.30 29.20 26.80
28.90 27.70 26.40 28.90 29.20 29.20 29.20 28.60
24.00 24.90 24.60 24.90 23.70 24.60 22.20 22.50
28.00 30.10 29.20 29.20 29.20 29.80 28.30 31.00
29.50 27.40 28.00 27.70 25.80 24.60 23.70 24.90
28.00 29.80 27.40 28.90 28.90 28.60 27.70 25.50



D21 D22 D25 D28 D32 D36 D39 D42
30.40 31.90 28.30 30.10 26.10 26.10 24.00 20.40
25.50 25.50 24.60 25.50 23.70 23.70 19.80 20.40
26.10 25.20 22.50 24.30 22.50 22.50 17.90 16.70
24.00 24.30 23.10 23.70 22.20 21.30 20.10 15.80
22.80 22.20 19.80 19.80 16.40 17.00 14.60 14.90
27.40 27.70 22.50 22.80 19.80 18.80 16.70 16.10
18.20 18.20 15.80 15.50 13.40 14.00 12.50 12.50
22.20 22.20 18.20 17.30 13.10 14.30 13.40 12.50
25.80 24.90 20.70 22.80 19.50 19.50 17.90 16.70
26.10 25.50 26.10 26.80 21.00 19.50 18.20 19.80
26.40 25.50 23.10 24.00 20.10 23.40 20.40 20.40
28.30 28.90 26.10 29.50 25.50 23.10 20.10 21.00
27.70 28.60 24.60 24.00 22.80 22.80 21.30 19.80
26.10 25.50 22.80 23.10 22.20 21.00 18.50 18.20
22.50 23.70 22.20 20.40 16.40 15.80 14.30 13.70
27.10 26.80 24.30 26.40 26.10 23.40 22.20 21.00
29.20 27.70 28.30 30.70 31.90 31.90 30.70 29.20
22.20 24.30 22.80 23.70 20.70 21.00 17.90 16.70
27.70 29.20 31.00 30.10 28.90 31.90 31.00 30.40
23.70 23.10 20.70 20.40 18.20 18.20 17.30 15.50
25.50 25.20 23.10 22.20 21.30 18.50 16.40 13.40



D46 D49 D53 D56 D60 D63 D66 D69
19.80 19.80 17.90 18.20 18.80 18.50 18.80 19.20
21.00 20.40 18.50 22.50 21.30 21.60 22.80 24.00
16.10 16.40 14.90 17.00 15.50 15.80 16.10 16.10
21.90 19.20 20.70 22.80 21.30 22.50 21.30 22.50
14.60 13.70 12.20 12.20 12.50 14.00 12.50 12.20
16.70 16.10 15.50 16.10 16.70 15.80 17.90 16.10
12.20 12.20 11.90 11.90 11.90 12.50 12.80 12.50
13.40 13.10 12.80 14.30 12.80 14.00 14.00 13.40
16.10 17.60 19.20 19.20 18.80 17.30 18.20 20.40
18.80 19.20 20.40 20.40 19.50 19.50 24.00 22.80
21.60 21.30 19.80 21.60 21.90 21.90 21.60 22.80
21.00 18.50 17.60 18.20 19.20 17.30 18.20 17.30
19.50 21.00 18.20 21.00 21.30 21.60 23.70 21.90
18.50 19.50 21.00 20.10 20.70 20.10 21.60 20.70
13.10 14.30 13.40 11.90 13.70 12.80 14.30 14.30
17.00 16.40 14.30 14.90 16.70 17.00 17.30 17.30
28.30 30.70 29.20 28.00 28.00 27.40 35.60 29.20
15.20 14.30 14.00 14.60 14.30 14.30 14.60 13.70
31.60 31.60 31.30 31.30 31.60 30.10 31.60 30.10
13.70 15.20 14.60 15.20 17.30 17.00 16.70 15.80
12.20 12.50 12.20 13.10 12.80 12.50 0.00 0.00



D73 D76 D80 D83 D87 D90 D94 D97
18.50 19.20 17.90 20.70 18.50 18.50 20.10 21.30
22.80 22.20 21.30 23.10 21.60 22.50 23.70 23.40
14.60 15.80 12.20 13.70 12.80 13.70 14.00 13.70
21.00 21.00 20.70 21.00 19.50 20.70 21.60 22.50
11.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16.40 15.50 14.90 15.80 15.50 14.00 16.10 14.90
11.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18.80 19.80 19.20 19.20 21.30 20.10 19.80 24.00
20.10 19.50 18.20 19.20 18.20 19.50 21.90 23.10
21.60 21.60 24.00 24.90 23.40 26.80 23.10 23.10
18.50 19.20 16.70 17.00 16.10 17.00 19.20 20.10
23.70 24.30 23.70 25.20 25.80 24.90 23.70 27.40
21.60 20.10 21.60 22.20 20.40 21.60 21.30 23.10
12.20 14.90 13.70 11.60 12.80 11.90 11.60 12.20
16.40 15.50 15.80 15.80 15.50 15.80 16.70 16.10
29.20 28.30 28.00 29.80 29.50 27.40 25.20 30.70
14.60 13.40 12.80 13.70 0.00 0.00 0.00 0.00
29.50 28.30 28.90 28.30 28.30 29.20 29.80 29.20
16.40 16.40 15.80 15.80 16.10 18.20 16.70 15.80

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00



D101 D104 D108 D111 D115 D118 D122 D125
20.70 21.00 18.80 21.90 19.50 21.60 21.90 22.50
21.90 26.40 22.50 22.50 21.00 22.50 21.00 22.50
13.10 13.70 12.80 13.40 0.00 0.00 0.00 0.00
22.50 25.50 22.20 23.70 21.00 22.20 23.70 22.50

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13.70 13.70 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21.30 21.90 21.60 20.70 20.40 19.50 21.60 19.80
20.40 21.30 21.30 21.30 19.80 20.70 18.50 19.80
23.10 23.70 21.90 23.70 22.50 23.70 23.70 23.40
19.50 19.80 18.20 17.90 17.00 18.20 18.20 17.30
25.80 27.70 26.80 25.80 28.60 26.40 27.40 27.40
22.50 22.20 21.30 22.80 20.70 22.20 20.70 21.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15.80 15.50 14.90 17.00 14.60 14.00 14.60 13.70
28.30 28.90 27.40 27.70 24.30 24.90 24.30 28.60

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30.10 30.70 29.80 27.10 26.80 27.10 26.10 27.10
19.50 18.20 17.00 16.70 17.30 19.50 16.40 16.40

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00



D129 D132 D136 D139 D143
22.80 23.40 23.40 25.50 22.20
22.20 24.60 21.60 22.80 24.90

0.00 0.00 0.00 0.00 0.00
23.40 24.00 20.10 21.90 23.40

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

20.70 19.80 21.00 19.50 22.20
21.00 21.60 21.60 22.80 21.30
22.20 24.30 24.60 25.20 24.00
16.40 19.80 17.90 19.50 20.40
25.80 29.20 27.40 28.30 25.50
20.70 22.80 20.40 18.20 17.60

0.00 0.00 0.00 0.00 0.00
14.60 15.20 15.80 0.00 0.00
28.00 28.30 28.30 28.30 26.40

0.00 0.00 0.00 0.00 0.00
26.40 26.40 28.60 27.40 24.90
16.10 17.30 17.90 19.80 16.70

0.00 0.00 0.00 0.00 0.00



 Example B-PCV
 
 
ANIM GROUP SEX DOB BLOCK INITWT WT0 WT12 WT19

4 A F 6/4/1999 1 142 180 178 180
6 A M 7/18/1999 2 112 148 140 148
8 A M 7/1/1999 2 120 150 142 152

11 A F 7/4/1999 2 122 156 148 152
16 A F 6/12/1999 1 132 160 116 110
19 A M 7/8/1999 2 122 160 152 160
20 A F 6/24/1999 1 108 147 124 132

1 B F 7/5/1999 2 114 139 136 138
5 B F 6/1/1999 1 160 198 194 198
9 B M 7/5/1999 2 136 172 168 174

12 B F 7/15/1999 2 100 118 116 120
14 B F 6/2/1999 1 140 200 200 200
17 B F 7/4/1999 2 136 210 200 200
18 B M 6/20/1999 1 112 130 142 152

2 C M 6/28/1999 2 122 152 144 152
3 C F 6/6/1999 1 64 144 140 144
7 C F 7/28/1999 2 110 132 126 128

10 C M 6/10/1999 1 124 120 120 126
13 C M 6/9/1999 1 120 148 144 148
15 C F 7/2/1999 2 114 138 146 154
21 C M 7/1/1999 2 126 164 156 158



WT28 WT36 WT42 WT49 WT56 WT63 WT69 WT76 WT83
190 190 190 188 182 182 184 178 178
150 156 158 162 160 162 162 162 164
150 154 152 148 142 140 134 138 128
156 160 160 162 162 170 170 172 172
104 108 102 102 98 96 98 0 0
164 164 160 160 152 156 150 152 146
132 132 130 132 132 128 124 0 0
148 144 138 140 138 136 132 0 0
200 204 200 200 196 198 196 202 198
172 180 178 176 174 182 176 180 178
124 126 128 132 138 138 138 142 144
204 210 212 212 202 206 200 196 194
202 208 210 210 200 204 206 206 208
154 144 152 148 146 148 152 152 152
158 158 152 144 146 146 138 140 138
148 154 144 146 140 146 134 136 130
136 142 140 142 144 150 150 156 158
122 122 120 118 114 110 112 108 108
142 152 156 166 160 162 160 164 164
140 138 136 136 132 130 134 126 130
160 162 158 160 148 148 0 0 0



WT90 WT97 WT104 WT111 WT118 WT125 WT132 WT139
180 182 182 180 182 182 184 182
166 164 166 172 170 168 170 170
124 122 122 116 0 0 0 0
178 172 174 178 178 180 180 182

0 0 0 0 0 0 0 0
146 142 140 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

198 195 202 196 198 202 200 200
170 166 174 172 170 170 168 168
148 148 148 148 150 148 152 148
198 194 198 198 198 194 196 196
210 210 210 218 214 216 214 216
148 150 150 154 156 154 154 154
134 134 0 0 0 0 0 0
124 126 124 118 118 116 116 0
162 154 156 158 160 162 162 160

0 0 0 0 0 0 0 0
172 170 172 174 176 176 178 180
128 130 128 128 126 124 124 122

0 0 0 0 0 0 0 0



 Example B-Summary
 
 
GROUP SEX DOB BLOCK INITWT WT0 INITPCV GRTH_69 GRTH_139
B F 7/5/1999 2 4/23/1900 139 31.8 -66 -66
C M 6/28/1999 2 5/1/1900 152 30.6 -143 -212
C F 6/6/1999 1 3/4/1900 144 28.9 -58 -275
A F 6/4/1999 1 5/21/1900 180 39.2 64 -18
B F 6/1/1999 1 6/8/1900 198 36.8 1 10
A M 7/18/1999 2 4/21/1900 148 33.6 304 191
A M 7/1/1999 2 4/29/1900 150 32.5 -165 -331
B M 7/5/1999 2 5/15/1900 172 34.9 118 -39
C M 6/10/1999 1 5/3/1900 120 25.3 -168 -198
A F 7/4/1999 2 5/1/1900 156 30.7 275 236
B F 7/15/1999 2 4/9/1900 118 30 361 271
B F 6/2/1999 1 5/19/1900 200 36.7 72 -78
C F 7/2/1999 2 4/23/1900 138 35.6 -214 -166
B F 7/4/1999 2 5/15/1900 210 36.2 11 97
B M 6/20/1999 1 4/21/1900 130 33.7 175 92
A M 7/8/1999 2 5/1/1900 160 36.5 -88 -196
A F 6/24/1999 1 4/17/1900 147 29.8 -156 -156
C M 7/1/1999 2 5/5/1900 164 33.3 -183 -183



MPCV49_56
13.4
13.2
15.2
18.6
18.7
20.5
16.1
20.0
14.3
20.9
20.9
18.1
15.0
20.1
20.2
15.9
12.0
12.6
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